

TECHNICAL SPECIFICATION

MODEL: 28 inch Color EPD

The content of this information is subject to be changed without notice. This document is for Innolux reference.

Customer's Confirmation

Customer

Date

Ву

Innolux's confirmation

Approve By

Confirmed By

Prepared By

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl

28" Color EPD

TECHNICAL SPECIFICATION

<u>CONTENTS</u>

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	General Description	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of Display Module	5
5	Input / Output Interface	6
6	Electrical Characteristics	9
7	Power Sequence	17
8	Optical Characteristics	19
9	Handling, Safety and Environment Requirements	22
10	Reliability test	24
11	Block Diagram	25
12	Packing	26
13	Bar Code definition	29

1. General Description

28 inch color EPD is a reflective electrophoretic E $Ink^{\[mu]}$ technology display module based on active matrix TFT substrate. The diagonal length of active area is 28" and contains 3840 x 1080 pixels and 32:9 aspect ratio. The display is capable to display multiple colors image depending on the display controller and the associated lookup table used.

2. Features

- Color display
- Ultra-wide viewing angle
- Pure reflective mode
- ➢ Bi-stable
- $\blacktriangleright \quad \text{Commercial temperature range (15 ~ 35 °C)}$
- Antiglare hard-coated front-surface

3. Mechanical Specifications

Parameter	Design	Unit	Remark
Screen size	28	inch	
Display Resolution	3840 (H) x 1080 (V)	Pixel	Aspect: 32:9
DPI 🔊	143	dpi	
Active Area	683.52(H) × 192.24(V)	mm	
Outline dimension	$698.6(W) \times 209.3(H) \times 0.953(D)$	mm	
Pixel Pitch	0.178 (H) x 0.178 (V)	mm	
Pixel Configuration	Square		
Border Size	8.0/7.08/7.06/8.0	mm	(L/R/U/D)
Display operation mode	Reflective mode		
FPL	E Ink Gallery TM 4000		
Surface Treatment	Anti-glare		
	Source COF: Himax HX-5271		
Driver IC	Gate COF: Solomon SPD1652		

4. Mechanical Drawing of Display Module

5. Input / Output Interface 5-1) Connector type:

Item	Pin numbers	Pitch (mm)	Connector	Note
CN1	51	0.5	P-TWO 187059-51221-1	LVDS Type
CN2	51	0.5	P-TWO 187059-51221-1	LVDS Type

5-2) Pin Assignment

Connector	CNI
	V1 1 1

Pin #	Signal	Description	Remark		
1	FPL_VCOM	Common Voltage.			
2	FPL_VCOM	Common Voltage.			
3	FPL_VCOM	Common Voltage.			
4	NC	NO Connection			
5	TFT VCOM	Common Voltage.			
6	TFT VCOM	Common Voltage.			
7	NC	NO Connection			
8	NC	NO Connection			
9	NC	NO Connection			
10	VGH	Positive power supply gate driver.			
11	VGH	Positive power supply gate driver.			
12	NC	NO Connection			
13	VP3	Positive power supply source driver.			
14	VP3	Positive power supply source driver.			
15	VP3	Positive power supply source driver.			
16	NC	NO Connection			
17	VP2	Positive power supply source driver.			
18	VP2	Positive power supply source driver.			
19	VP2	Positive power supply source driver.			
20	NC	NO Connection			
21	VP1	Positive power supply source driver.			
22	VP1	Positive power supply source driver.			
23	VP1	Positive power supply source driver.			
24	NC	NO Connection			
25	VDD	Logic power.			
26	VDD	Logic power.			
27	NC	NO Connection			
28	VSS	Ground			
29	VSS	Ground			
30	NC	NO Connection			
31	VN1	Negative power supply source driver.			
32	VN1	Negative power supply source driver.			
33	VN1	Negative power supply source driver.			
34	NC	NO Connection			
35	VN2	Negative power supply source driver.			
36	VN2	Negative power supply source driver.			
37	VN2	Negative power supply source driver.			
38	NC	NO Connection			
39	VN3	Negative power supply source driver.			
40	VN3	Negative power supply source driver.			
41	VN3	Negative power supply source driver.			
42	NC	NO Connection			
43	VGL	Negative power supply gate driver.			
44	VGL	Negative power supply gate driver.			
45	NC	NO Connection			
46	NC	NO Connection			
47	NC	NO Connection			
48	NC	NO Connection			
49	STBYB	mini-LVDS enable.			
50	XON	XON signal gate driver			

Output enable gate driver

Connector CN2

Pin #	Signal	Description							
1	DSEL		Data Input select						
2	LEH		Latch enable source driver						
3	OFH		Outputs enabled when OE is logic "H",						
5	OLII		01	tputs forced to GND wh	en OE is logic "L".				
				Shift direction control	pin gate driver				
4	UD		UE) = H: Data shift directio	n from G1 to G800.				
			UI	D = L: Data shift direction	n from G800 to G1.				
_		~		Shift direction control p	in source driver				
5	SHR	S	HK = H	1: Data inputs read seque	entially from \$800 to \$1.				
		2	HK =I	L: Data inputs read seque	entially from \$1 to \$800.				
			D						
6	SPV2	0.	D	Start pulse input	Start pulse output				
Ŭ	51 (2	H	ł	SPV1	SPV2				
		I		SPV2	SPV1				
				Start pulse gate	e driver				
		U	D	Start pulse input	Start pulse output				
7	SPV1	F	ł	SPV1	SPV2				
		I		SDV2	SDV1				
		1	-	SPV2	SPVI				
				Start pulse source	ce driver				
8	SDH2	SE	IR	Start pulse input	Start pulse output				
0	8 SF112	H	I	SPH2	SPH1				
		I		SPH1	SPH2				
				Start pulse source	ce driver				
		SE	IR	Start pulse input	Start pulse output				
9	SPH1	L	1	SDH2	SDH1				
			1	SD112	CDU2				
10	Vaa		-	SPHI	SFH2				
10	V SS CVV		Ground						
11			Ground						
12	I V11N		Data signal source driver						
13	LV11P		Data signal source driver						
15	VSS			Ground					
16	LV10N			Data signal sour	ce driver				
17	LV10P			Data signal sour	ce driver				
18	VSS			Ground					
19	LV9N			Data signal sour	ce driver				
20	LV9P			Data signal sour	ce driver				
21	VSS			Ground					
22	LV8N			Data signal sour	ce driver				
23	LV8P		Data signal source driver						
24	VSS			Ground	an dairean				
25	LV/N_DI5			Data signal sour	ce uriver				
26	LV/P_D14		Data signal source driver						
21	V 55 I V 6N D13		Ground Data signal source driver						
20	LV6P D12		Data signal source driver						
30	VSS	Ground							
31	CLKN GLOSTI			Data signal sour	ce driver				
32	CLKP CKH			Data signal sour	ce driver				
33	VSS			Ground					
34	LV5N_D11			Data signal sour	ce driver				
35	LV5P_D10			Data signal sour	ce driver				
36	VSS			Ground					
37	LV4N_D9			Data signal sour	ce driver				
38	LV4P D8	Data signal source driver							

28" Color EPD

39	VSS	Ground				
40	LV3N_D7	Data signal source driver				
41	LV3P_D6	Data signal source driver				
42	VSS	Ground				
43	LV2N_D5	Data signal source driver				
44	LV2P_D4	Data signal source driver				
45	VSS	Ground				
46	LV1N_D3	Data signal source driver				
47	LV1P_D2	Data signal source driver				
48	VSS	Ground				
49	LV0N_D1	Data signal source driver				
50	LV0P_D0	Data signal source driver				
51	VSS	Ground				

5-3) Panel Scan Directions

6. Display Module Electrical Characteristics 6-1) Absolute maximum rating

o i) hosoidte maximum ruting				
Parameter	Symbol	Rating	Unit	Remark
Logic Supply Voltage	VDD	-0.3 to +5	V	
Positive Supply Voltage	VP3	-0.3 to +18	V	
	VP2	-0.3 to +18	V	
	VP1	-0.3 to +18	V	
Negative Supply Voltage	VN1	-18 to + 0.3	V	
	VN2	-18 to + 0.3	V	
	VN3	-18 to + 0.3	V	
Max .Drive Voltage Range	VPx - VNx	36	V	
Supply Voltage	VGH	-0.3 to +55	V	
Supply Voltage	VGL	-32 to +0.3	V	
Supply Range	VGH-VGL	-0.3 to +55	V	
Operating Temp. Range	TOTR	+15 to +35	°C	
Storage Temperature	TSTG	-25 to +50	°C	

6-2) Panel DC characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	VSS			0		V
Logio voltago gunnlu	VDD		2.7	3.3	3.6	V
Logic voltage supply	IDD	VDD=3.3V			TBD	mA
	VGL		-22	-20	-19	V
Gate negative suppry	IGL	VGL=-20V			TBD	mA
Cata Dogitiya gupply	VGH		26	27	29	V
Gate Positive supply	IGH	VGH=27V			TBD	mA
Source reactive currly	VN1		-13.5	Adjusted	-7.5	V
Source negative supply	IN1				TBD	mA
Source reactive currly	VN2	X	-2.65	-2.5	-2.25	V
Source negative suppry	IN2	C I			TBD	mA
Source reactive currly	VN3	1	-16.5	-15	-12.5	V
Source negative suppry	IN3	0			TBD	mA
Source Desitive supply	VP1	0	8.5	Adjusted	18	V
Source Positive suppry	IP1		6		TBD	mA
Source Desitive supply	VP2		8.5	10	12.5	V
Source Positive suppry	IP2			•	TBD	mA
Source Desitive supply	VP3		14	16	18	V
Source Positive suppry	IP3				TBD	mA
	Vcom_TFT		-20.0	Adjusted	20.0	V
Common voltago	Icom_TFT			TBD	TBD	mA
Common voltage	Vcom_FPL		-20.0	Adjusted	20.0	V
	Icom_FPL			TBD	TBD	mA
Maximum Power panel	Pmax				TBD	mW
Typical power panel	Ptyp			TBD		mW
Standby power panel	Pstby				TBD	mW

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Maximum Currents (Note 5)	IPx	VPx = 15V	-		TBD	mA
	INx	VNx = -15V	-		TBD	mA
	IGH	$V_{GH} = 27V$	-		TBD	mA
	IGL	$V_{GL} = -20V$	-		TBD	mA
	ICOM		_		TBD	mA

Note :

- 1. The maximum average Currents for power consumption are measured using 65 Hz waveform with following pattern transition: from black and white single checker pixel pattern to inversed black and white single checker pixel pattern. (Note 6-1)
- 2. The Typical average current for power consumption is measured using 65 Hz waveform with following pattern transition: from horizontal 8 generic color pattern to vertical 8 generic color pattern. (Note 6-2)
- 3. The standby power is the consumed power when the panel controller is in standby mode.
- 4. The Maximum Currents are measured using 65 Hz waveform with following pattern transition: from black and white single checker pixel pattern to inversed black and white single checker pixel pattern. (Note 6-1)
 - It is performed with decoupling capacitors on each power rail as below table (Note 6-3).
 - The minimum value in table of Maximum current is produced by charging mechanism between decoupling capacitors.
- 5. The listed electrical/optical characteristics are only guaranteed under the controller and waveform provided by E Ink.
- 6. Vcom is recommended to be set in the range of assigned value ± 0.1 V
- 7. Use of measuring instruments: Oscilloscope (Model: Tektronix MDO3024)
- 8. The maximum current is for reference only.

Note6-1

The maximum average current and Maximum Currents

Note6-3

The decoupling capacitors on each power rail for Max. Currents

Power rail	Capacitors suggested (uF / Tolerance)
IPx	2.2uF x 1pcs / ±15% x 24 pcs
INx	2.2uF x 1pcs / ±15% x 24 pcs
IGH	2.2uF x 1pcs / ±15% x 2 pcs
IGL	2.2uF x 1pcs / ±15% x 3 pcs
ICOM	No Capacitor

6-3) Refresh Rate

The 28" color EPD is applied at a maximum screen refresh rate of 65Hz.

	Min.	Тур.	Max.
Refresh Rate	-	65 Hz	S -

6-4) Panel AC characteristics

VDD=2.7V to 3.6V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit
mini-LVDS differential voltage	V _{ID}	300	-	-	mV
mini-LVDS common mode input voltage range	VI	0.4	1.0	VDD-1.4	V
Source Clock frequency	F _{CLK}	-	-	150	MHz
Source Clock duty	t _{DUTY}	45	-	55	%
Source Clock setup time	t _{SETUP1}	1.1	-	-	ns
Source Clock hold time	t _{HOLD1}	1.1	-	-	ns
Rise time	t _{RISE}	-	-	0.15	Unit interval
Fall time	t _{FALL}	-	-	0.15	Unit interval
LE rising to reset input time	t _{LE-RESET_HIGH}	200	-	-	ns
LE falling to reset input time	t _{LE-RESET_LOW}	200	-	-	ns
Start pulse delay time	t _{PLH1}	-	-	4	CLK
Start pulse delay time	t _{PHL1}	-	-	4	CLK
Reset high period	t _{RESETH}	3	-	-	CLK
Receiver off to LE timing	t _{REC-OFF}	40	-	-	CLK
LE width	t _{LE}	300	-	-	ns
Reset low to LE rising time	t _{RESET-LE}	0	-	-	ns
Gate clock frequency	f _{CLK}	-	-	200	kHz
Gate clock pulse high period	t _{CLKH}	500	-	-	ns
Gate clock pulse low period	t _{CLKL}	500	-	-	ns
Gate clock rise time	t _{IR_CLK}	-	-	100	ns
Gate clock fall time	t _{IF_CLK}	-	-	100	ns
Gate Start pulse setup time	t _{SU}	100	-	t _{CLKH} -100	ns
Gate Start pulse hold time	t _{HD}	100	-	t _{CLKL} -100	ns
Gate Start pulse rise time	t _{IR_STV}	-	-	100	ns
Gate Start pulse fall time	t _{IF_STV}	-	-	100	ns
Gate STV output delay from CLK	t _{OD_STV}	-	-	500	ns
Output delay time from CLK	t _{D_OUT}	-	-	2	us
Output rise time, output pins	t _{R_OUT}	-	-	1	us
Output fall time, output pins	t _{F_OUT}		-	1	us
XONL/R pulse width	t _{WXON}	10	-	-	us
Output delay time from XON	t _{DXON OUT}	-	-	20	us

28" Color EPD

6-5) Controllers Timing

The timing mode is depicted on Figure 6.1 and Figure 6.2 and it refers to timing of Source Driver Output Enable (SDOE) and Gate Driver Clock (GDCK). Note, the controller timing in the mode LGON follows GDCK timing.

Figure 6.1 Line Timing in Mode 3

Note: LCK is an internal signal and it is shown for reference only.

ŧ	NNO 詳創光	UX 電
NC L	.CK(internal)	
0	SDLE	
0	SDCE_L	
0	GDSP	
0	GDCK	
0	SDOE	FBL FBL FDL FEL
0	GDOE	

Note 1: For Freescale SoC GDOE Low pulse represent FSL and GDSP pulses with the first period of FBL

Note 2: SDCLK = XCL $LV[0:11]P/N = LV0P\sim LV11N$ $SDCE_L = XSTL$ GDCK = CKV GDSP = SPV GDOE = Mode1SDOE = XOE

7. Power Sequence

Power Rails must be sequenced in the following order : 1. VSS \rightarrow VDD \rightarrow VNx \rightarrow VPx (Source driver) \rightarrow VCOM

2. VSS \rightarrow VDD \rightarrow VGL \rightarrow VGH (Gate driver)

POWER ON

	Min	Max	Remark		
Tsd	30us	-			
Tde	100us	- 0			
Тер	1000us	_			
Tpv	100us	-			
Tvd	100us	-			
Ten	Ous	-			
Tng	1000us	-			
Tgv	100us	-			

	Min	Max	Remark
Tdv	100µs	-	-
Tvg	0µs	-	-
Tgp	0µs	-	
Tpn	0µs	-	-
Tne	0µs	-	-
Ted	0.5s	-	Discharged point @ -7.4 Volt

8. Optical characteristics

8-1) Specification

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.

						T = 2	5°C
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР.	MAX	UNIT	Note
CR	Contrast Ratio	KW		10	-		-
Gamut	Color Saturation	-		60K		dE^3	
	Color Performance	Cyan (0,131,163)		TBD		-	
Dither Color		Magenta (196,0,137)		TBD			
		Yellow (216,203,0)		TBD			
		Red (190,26,0)		TBD		I * a* b*	Note
		Green (0,137,39)		TBD		L',a',0'	8-1 8-2
		Blue (59,0,137)		TBD			
		Black (0,0,0)		TBD			
		White (255,255,255)		TBD			
T _{update_RS}	Update time	Image to Image $(A \rightarrow W \rightarrow B)$		25		sec	

Note 8-1 : The rendered color inputs are chosen to have the highest saturation within a given color;

They are not sRGB primaries

Note 8-2 : Performance values at 25 °C ambient; 8 dither color

This is the preliminary performance and is subjected to change.Performance values at 25°C ambient.

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd) :

8-3) Reflection Ratio The reflection ratio is expressed as :

 $R = Reflectance \ Factor_{white \ board} \quad x \quad (\ L_{center} \ / \ L_{white \ board} \)$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

8-4) Definition of Color Performance & Saturation ratio

The Spectroradiometer PR655 with MS-75 lens was used to measure color image to obtain L*, a*, b*. Collect L*, a*, b* and then determine the color space.

9. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.

(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.

(3) You should adopt radiation structure to satisfy the temperature specification.

4) Acetic acid type and chlorine type materials for the cover case are not desirable because he former generates corrosive gas of attacking the PS at high temperature and the latter cause's circuit break by electro-chemical reaction.

(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)

(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.

(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status

Product specification

This data sheet contains Preliminary product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other condition these are stress ratings only and operation of the device at these or at any other condition to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification

10. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T = +35 °C, RH = 50% for 240 hrs	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 15°C, RH = 35% for 240 hrs	IEC 60 068-2-2Ab	
3	Low-Temperature Storage	T = -25 °C for 240 hrs Test in white pattern	IEC 60 068-2-1Ab	
4	High-Temperature Storage	T = +50 °C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp	
5	High-Temperature, High-Humidity Storage	T = +50 °C, RH = 80% for 240 hrs	IEC 60 068-2-3CA	
6	Temperature Cycle	-25 °C→+60 °C, 50 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14	
7	Package Vibration	Random Wave (1.5Grms) Frequency: 10~200Hz Direction: X,Y,Z Duration: 30mins each direction	Full packed for shipment	PPBOX package
8	Package Drop Impact	Drop from height of 15.2 cm on concrete surface. Drop sequence: 6 flats	Full packed for shipment	PPBOX package
9	Electrostatic Effect (non-operating)	Air 15k, Contact 8k	IEC 62179, IEC 62180	

Actual EMC level to be measured on customer application

Note: The protective film must be removed before temperature test.

< Criteria >

In the standard conditions, there is not display function NG issue occurred. (Including: line defect, no image). All the cosmetic specification is judged before the reliability stress.

12-2) Label position

12-3) Pallet Stacking

Note: Stacking layer limitation: 6 layers.

13. Bar Code definition

28" Color EPD

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl