

HT7Q2552 3 to 8 Cell Analog Front End for Li-Battery Protection

Features

- + V_{IN} input range from 7.5V to 36V
- Individual cell voltage monitor outputs 1/2 of battery cell voltage, when the analog output is 2.1V, it has an accuracy of ±7.5mV
- Internal cell charging balance switches
- Integrated voltage regulator with 5V/50mA and $\pm1\%$ accuracy
- At Ta=-40°C~85°C, 2.5V reference voltage output with a maximum variation of 15mV in temperature drift
- Two Discharge N-type MOSFET gate drivers
- Single Charge N-type MOSFET gate driver
- Charge/Discharge differential current monitor:
- IMON pin outputs amplified ISP0-ISN0 differential voltage
- Voltage amplifying rate selection: 10/50
- Discharge short-current detection:
 - Detection threshold voltage selection: 50mV/ 100mV/150mV/200mV/250mV/300mV/350mV/ 400mV
 - Detection debounce time selection: 0µs~992µs, 32 sections, 32µs per section
- Integrated Over-temperature protection selection: 85°C/100°C/125°C/150°C
- Sleep mode with $0.1 \mu A$ ultra-low standby current
- Two High-voltage wake-up functions
- I²C bus communication with host MCU
- Operating temperature range: -40°C to +85°C
- Package type: 32-pin QFN

Applications

- Handheld vacuum cleaners
- Electric power tools

General Description

The HT7Q2552 is a high voltage analog-front-end IC for 3 to 8 cell Li-ion rechargeable battery protection. It consists of a 5V high accuracy regulator, an accuracy 2.5V reference voltage output, an individual cell voltage monitor, two discharge paths, i.e., low-side power switch gate drivers, a charge path, i.e., high-side power switch gate driver, a charge/ discharge differential current monitor, and a discharge short-current protection. The cell voltage monitor is designed to monitor each battery cell voltage individually and outputs the divide-by-2 voltage to the analog multiplexer with $\pm 0.36\%$ accuracy. The current monitor channel provide charge and discharge current monitoring and short-current protection. The device can directly drive external N-type MOSFETs to control charge and discharge by charge and discharge gate drivers. The internal battery balance circuitry provides a cell balance current without the need of external transistors. Each monitored battery cell voltage can be observed sequentially from VBAT1 to VBAT8 which benefits MCUs with a lower number of ADCs.

An integrated 5V regulator provides a 5V supply to the MCU with a 50mA driving current capability and which has $\pm 1\%$ accuracy. The voltage regulator, cell voltage monitor, current monitors, and gate drivers are shut down with an ultra-low standby current 0.1µA when the device is in the Sleep mode. When the HVWK1 or HVWK2 pin is triggered by a voltage greater than its threshold, the device will return to the normal operating status.

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl

Functional Block Diagram

Pin Assignment

Pin Description

Pin No.	Name	Туре	Pin Description
1	VCP	0	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
2	BAT	0	Charge pump capacitor for DGCN. Connect a capacitor between VCP and BAT
3	DGN1	0	Gate driver output 1 for driving discharge n-MOSFET. Recommended for applying on secondary loading path.
4	DGN0	0	Gate driver output 0 for driving discharge n-MOSFET. Recommended for applying on primary loading path.
5	VIN_LDO	Р	Input supply voltage for regulator
6	VIN	Р	Input supply voltage for gate drivers
7	NC	_	Not connected
8	VREG	0	Regulator 5V/50mA output. Connect 4.7µF capacitor typically
9	INTB	0	Interrupt output pin of short current detection for MCU. NMOS open drain output and output an 'L' level pulse when short-current event is detected.
10	VREF	0	Reference voltage 2.5V output pin
11	DCN	Ι	Gate driver DGCN control input*
12	SCL	I/O	I ² C serial clock line
13	DN1	Ι	Gate driver DGN1 control input*
14	SDA	I/O	I ² C data clock line
15	DN0	I	Gate driver DGN0 control input*
16	IMON	0	Current monitor output pin. Voltage of ISP-ISN multiplied by 10 or 50 is outputted.
17	VOUT	0	Voltage monitor output
18	ISP	I	Current monitor positive terminal voltage input pin. The voltage level of ISP pin should be higher than that of ISN in discharge state.
19	ISN	Ι	Current monitor negative terminal voltage input pin. Connected to the most negative terminal of battery cells.
20	VBAT0	I	Battery cell 1 negative terminal
21	VBAT1	I	Battery cell 1 positive terminal and battery cell 2 negative terminal
22	VBAT2	I	Battery cell 2 positive terminal and battery cell 3 negative terminal
23	VBAT3	I	Battery cell 3 positive terminal and battery cell 4 negative terminal
24	VBAT4	I	Battery cell 4 positive terminal and battery cell 5 negative terminal
25	VBAT5	I	Battery cell 5 positive terminal and battery cell 6 negative terminal
26	VBAT6	I	Battery cell 6 positive terminal and battery cell 7 negative terminal
27	VBAT7	Ι	Battery cell 7 positive terminal and battery cell 8 negative terminal

Pin No.	Name	Туре	Pin Description
28	VBAT8	I	Battery cell 8 positive terminal
29	DGCN	0	Gate driver output for driving charge n-MOSFET
30	HVWK1	I	Sense and trigger pin of High voltage Wake-up function 1.
31	HVWK2	I	Sense and trigger pin of High voltage Wake-up function 2.
32	GND	G	Ground terminal
EP	GND	G	Connected to GND

Note: I: Input; O: Output; P: Power; G: Ground; *: Internal pull down with $370k\Omega$.

Absolute Maximum Ratings

Pin/Parameter		Value	Unit
VIN, VIN_LDO, HVWK1, HVWK2, BAT		-0.3 to +48	V
DGCN, VCP		-0.3 to +60.0	V
VREG	-0.3 to +5.5	V	
DGN0, DGN1	-0.3 to 18	V	
VOUT, SCL, SDA, DN0, DN1, DCN, ISP, ISN, IMOI	-0.3 to +5.5	V	
∆[VBATi~VBAT(i-1)], i=8, 7, 6, 5, 4, 3, 2, 1	-0.3 to +5.5	V	
Operating Temperature Range		-40 to +85	°C
Maximum Junction Temperature		+125	°C
Storage Temperature Range		-60 to +150	°C
Lead Temperature (Soldering 10sec)		+260	°C
ESD Susceptibility	Human Body Model	±2000	V
	Machine Model	±200	V
Junction-to-Ambient Thermal Resistance, θ_{JA}	32QFN (4×4)	47	°C/W

Recommended Operating Range

Pin / Parameter	Value	Unit
V _{IN}	7.5 to 36	V
T _A	-40 to +85	°C

Note that Absolute Maximum Ratings indicate limitations beyond which damage to the device may occur. Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

Electrical Characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Supply and Inp	but	t.				
VIN	Supply Voltage		7.5	—	36.0	V
I _{IN(STB)}	Supply Current (Standby)	EN_S=EN_VREF=IMCE=ISCE='0' EN_OTD=EN_TS='0' DN0=DN1=DCN='0'	_	3.5	6.0	μA
I _{IN(STB_DSG)}	VIN Supply Current with DGN0 and Short Current Detection is Activated	EN_S=EN_VREF=IMCE= EN_OTD=EN_TS='0' ISCE='1', DN0='1', DN1=DCN='0'		18	20	μA
IOPR_DGNx	VIN Operating Current when DGN0 and DGN1 Outputs are On	DN0=DN1='1', DCN='0'		15	_	μA
Islp	Standby Current in SLEEP Mode	SLP1='0', SLP0='1', V _{HVWK} =0V	—	0.1	0.2	μA
Voltage Regula	tor					
V _{REG}	Regulator Output Voltage	I _{LOAD} =10mA	4.95	5.00	5.05	V
I _{REG}	Regulator Maximum Output Current	V _{IN} =7.5V, T _A =-40~85°C	50	_	_	mA
ΔV_{REG}	Load Regulation	ILOAD=0~50mA			50	mV
$\frac{\Delta V_{\text{reg}}}{(V_{\text{reg}} \times \Delta V_{\text{IN}})}$	Line Regulation	V _{IN} =7.5~36V, I _{LOAD} =10mA	_	0.02	_	%/V
$\frac{\Delta V_{REG}}{(V_{REG} \times \Delta T_A)}$	V _{REG} Temperature Coefficient	I _{LOAD} =1mA, T _A =-40~85°C	_	±100	_	ppm/ °C
R _{DIS}	V _{REG} Discharge Resistance	SLP1='0', SLP0='1', V _{REG} =1V, I _{REG1} denotes VREG input current at V _{REG} =1V, R _{DIS} =V _{REG} /I _{REG1}	_	330	_	Ω
Cell Balancer						
D	Coll Delense Desistence	V _{Bi} =4.5V (i=1~8), VBATi series resistors=0Ω	80	110	140	Ω
КСВ	Cell Balance Resistance	V _{Bi} =2.5V (i=1~8), VBATi series resistors=0Ω	120	160	200	Ω
Reference Volt	age					
VREF	Reference Voltage	EN_VREF='1'	2.492	2.500	2.508	V
ΔV_{REF} (Note)	V _{REF} Temperature Coefficient	I _{LOAD} =1μΑ, Τ _Α =-40~85°C			±15	mV
IREF_SOUR	VREF Pin Output Source Current	CVREF=0.1µF. Peak current at EN_VREF '0'→'1' rising edge	_	2	_	mA
IREF_SINK	VREF Pin Output Sink Current	CVREF=0.1µF. Peak current at EN_VREF '1'→'0' falling edge	_	1	_	mA
$t_{s}V_{REF}$	VREF Pin Settling Time	Settling time from $V_{REF}=0V$ to 2.475V. $C_{VREF}=30pF$	_	20	30	μs
Input/Output L	ogic	-				
VIL	DN0, DN1, DCN Input Logic Low voltage	_	_	_	1.5	V
VIH	DN0, DN1, DCN Input Logic High Holtage	—	3.5	_	_	V
R _{PD}	DN0, DN1, DCN Pull Down Resistance	_		370	_	kΩ
V _{L(INTB)}	INTB 'Low' Output Voltage	Load current=500µA, V _{REG} =5V	_	_	0.1	V
R _{PU_INTB}	INTB Pulled High to VREG Resistance	_	_	50		kΩ
High Voltage W	/ake-Up					
Vwkth	HVWK1 and HVWK2 Threshold Voltage	_		5.5	_	V

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Т _{WKDB}	HVWK1 and HVWK2 Debounce Time	—	1	_	_	ms
Іwк	HVWK1 and HVWK2 Input Current	V _{HVWK} =36V		50		μA

Note: Design guaranteed.

Electrical Characteristics (Cont.)

		v_{IN} - 30V, C_{REG} - 4.7 μ F and T_A - +.	25°C, ur	liess oth	erwise s	pecified
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Cell Volta	age Monitor	1				
V _{Bi}	Cell Voltage	i=1~8	1.5	—	4.5	V
V _{B(MIN)}	Input Voltage between VBATi and VBATi-1 for Cell Voltage Monitoring	_	_	1.5		V
I _{Bi(PWR)}	Cell Input Leakage Current when VIN Powered	V _{Bi} =5V (i=1~8). EN_S='0'. V _{IN} =V _{BAT8}	-0.1	_	0.1	μA
I _{Bi(ACT)}	Cell Input Current when Voltage Monitoring	V _{Bi} =4.2V×i. EN_S bit='1', V _{IN} =36V. i=1∼8	_	15	_	μA
V	Cell Voltage Monitor Output	V _{Bi} - V _{Bi-1} =4.2V. i=1~8. T _A =25°C	2.094	2.100	2.106	V
V OUT_VM	Accuracy	V _{Bi} - V _{Bi-1} =4.2V. i=1~8. T _A =-40~85°C	2.092	2.100	2.108	V
Ivout_sour	Cell Voltage Monitor Output Source Current	$\label{eq:VBi} \begin{array}{l} V_{\text{Bi}} - V_{\text{Bi}\text{-}1} \text{=} 4.2 \text{V. i=} 1 8. \ C_{\text{VOUT}} \text{=} 0.1 \mu \text{F.} \\ \text{Peak current at EN} \text{S} \ \text{`0'} \text{\rightarrow'1' rising} \\ \text{edge} \end{array}$		2	_	mA
Ivout_sink	Cell Voltage Monitor Output Sink Current	$\begin{array}{l} V_{Bi} - V_{Bi-1} {=} 4.2V. \ i{=} 1{\sim} 8. \ C_{VOUT} {=} 0.1 \mu F. \\ Peak \ current \ at \ EN_S \ `1' {\rightarrow} `0' \ falling \\ edge \end{array}$		1	_	mA
HS Gate	Charge Pump					
V _{CP_UVLO+}	V(VCP, BAT) Turn On Level	V(VCP,BAT) rises	_	3	_	V
V _{CP_UVLO-}	V(VCP, BAT) Turn Off Level	V(VCP,BAT) falls	—	2.5	—	V
V _{CP}	VCP Output Voltage	EN_CP='1', BAT=VIN>13V	V _{IN} +10	V _{IN} +12	V _{IN} +16	V
t _{CP_ON}	Rising Time of the Voltage Difference between VCP and VBAT	External capacitor 22nF between VCP and BAT. V_{IN} =36V, V(VCP, BAT) rises from 10% to 90% (V _{CP} -V _{BAT}) ^(Note)		25	_	ms
f _{CP}	Charge Pump Switching Frequency	EN_CP='1'	_	600	_	kHz
Gate Driv	vers					
		DNx='1', V _{IN} >13V	10	12	16	V
Vz	DGNX Clamp Voltage	DNx='1', V _{IN} ≤13V	_	V _{IN} -0.7		V
tr	DGNx Rising Time	C _{DGNx} =15nF ^(Note)	_	0.5	1.0	μs
t _f	DGNx Falling Time	C _{DGNx} =15nF ^(Note)	_	0.5	1.0	μs
t _{PD_HL}	DGNx Falling Propagation Delay Time	C _{DGNx} =15nF ^(Note)	_	0.5	1.0	μs
t _{PD_LH}	DGNx Rising Propagation Delay Time	C _{DGNx} =15nF ^(Note)	_	0.5	1.0	μs
t _{MM}	DGNx Delay Time Mismatch	C _{DGNx} =15nF. t _{MM} = t _{PD_LHx} - t _{PD_HLx}	_	0.5	1.0	μs
	DGNx Source Current	C _{DGNx} =1µF, peak current at DNx '0'→'1' rising edge	_	850	_	mA
I _{sink}	DGNx Sink Current	C _{DGNx} =1µF, peak current at DNx '1'→'0' falling edge	_	850	_	mA
I _{OPR_DGNx}	VIN Operating Current when DGN0 and DGN1 Outputs are On	DNx='1'	_	15	_	μA

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
R _{PL_S}	DGNx Pull Low Resistance at Sleep and Standby Mode	DNx='0', SLP1='0'& SLP0='1'& HVWKx='0' or HVWKx='1', resistance between DGNx and GND	_	10	_	Ω
V _{DGCN_ON}	DGCN Gate Drive Turn-on Voltage	EN_CP='1', DCN='1'	—	VCP	—	V
V _{DGCN_OFF}	DGCN Gate Drive Turn-off Voltage	EN_CP='1', DCN='0'	_	V _{IN}	—	V
R _{DGCN_ON}	DGCN Gate Drive Turn-on Resistance	EN_CP='1', DCN='1'	_	2	_	kΩ
R _{DGCN_OFF}	DGCN Gate Drive Turn-off Resistance	EN_CP='1', DCN='0'	_	150	_	Ω
t _{rC}	Rising Time of the Voltage Difference between DGCN and BAT	$ \begin{array}{l} EN_CP='1', \ C_{DGCN-BAT}=15nF, \\ V_{IN}=36V, \ V(DGCN, \ BAT) \ rises \ from \\ 10\% \ to \ 90\% \ (V_{DGCN}-V_{BAT})^{(Note)} \end{array} $	_	220	_	μs
t _{fC}	Falling Time of the Voltage Difference between DGCN and BAT	$\begin{array}{l} EN_CP='1', \ C_{DGCN-BAT}=15nF, \\ V_{IN}=36V, \ V(DGCN, \ BAT) \ falls \ from \\ 90\% \ to \ 10\% \ (V_{DGCN}-V_{BAT})^{(Note)} \end{array}$	_	5	_	μs

Note: These parameters are periodically sampled but not 100% tested.

Electrical Characteristics (Cont.)

 $V_{\text{IN}}=36V,\ C_{\text{REG}}=4.7\mu\text{F},\ \text{ISP0-to-ISN0}\ \text{shunt}\ \text{resistor}=5m\Omega,\ T_{\text{A}}=+25^{\circ}\text{C},\ \text{unless otherwise}\ \text{specified}$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Current N	lonitor	1				
		IMCE='1', IAR='0', T _A =25 °C	9.7	10.0	10.3	V/V
GIM(R10)	IMON Output Voltage Amplify	IMCE='1', IAR='0', T _A =-40~85 °C	9.5	10.0	10.5	V/V
<u> </u>	Rate	IMCE='1', IAR='1', T _A =25 °C	48.5	50.0	51.5	V/V
GIM(R50)		IMCE='1', IAR='1', T _A =-40~85 °C	47.5	50.0	52.5	V/V
		IMCE='1', IAR='0', V_{REG} =5V, shunt resistor=5m Ω	-8	_	82	А
IMR(R10)	Current Meniter Denne	IMCE='1', IAR='0', V_{REG} =5V, shunt resistor=2m Ω	-20	_	205	А
	Current Monitor Range	IMCE='1', IAR='1', V_{REG} =5V, shunt resistor=5m Ω	-1.2	_	16	А
IMR(R50)		IMCE='1', IAR='1', V_{REG} =5V, shunt resistor=2m Ω	-3	_	40	А
VIMO(R10)	IMON Output Voltage at No	V _{ISP} -V _{ISN} =0V, IMCE='1', ZERO='0', IAR='0'	0.3	0.5	0.7	V
VIMO(R50)	Sensing Current	V _{ISP} -V _{ISN} =0V, IMCE='1', ZERO='0', IAR='1'	0.30	0.50	0.85	V
VIMZ(R10)	IMON Output Voltage at ZERO	IMCE='1', ZERO='1', IAR='0'	0.30	0.50	0.70	V
VIMZ(R50)	State	IMCE='1', ZERO='1', IAR='1'	0.30	0.50	0.85	V
IIMO(SOURCE)	IMON Output Source Current	—	100	_	_	μA
IIMO(SINK)	IMON Output Sink Current	—	100	—	—	μA
t _{IMZS(R10)}	IMON Settling Time at ZERO State	IAR='0', ZERO='1', timing from IMCE='1' to V _{IMON} settled at V _{IMZ}	—	_	100	μs
t _{IMZS(R50)}		IAR='1', ZERO='1', timing from IMCE='1' to V _{IMON} settled at V _{IMZ}	_	_	500	μs
l _{is}	ISP, ISN Input Current	V _{ISP} =V _{ISN} =0V, IAR='0',ZERO='0'	_	-0.46	_	μA
t _{IMR_P(R10)}	IMON Output Rising Time	IAR='0', ZERO='0', IMCE='1', V _{ISN} =0V, V _{ISP} rises from 0V to 0.1V in 10µs		60	_	μs
t _{IMR_P(R50)}	SP, ISN Input Current MON Output Rising Time V _{ISP} >V _{ISN})	IAR='1', ZERO='0', IMCE='1', V _{ISN} =0V, V _{ISP} rises from 0V to 0.1V in 10µs		300	_	μs
t _{IMF_P(R10)}	IMON Output Falling Time	IAR='0', ZERO='0', IMCE='1', V _{ISN} =0V, V _{ISP} falls from 0.1V to 0V in 10µs		60	_	μs
t _{IMF_P(R50)}	Current Monitor Range WON Output Voltage at No- iensing Current WON Output Voltage at ZERO itate WON Output Source Current WON Output Sink Current WON Settling Time at ZERO itate SP, ISN Input Current WON Output Rising Time VISP>VISN) WON Output Falling Time VISP>VISN) WON Output Rising Time VISP>VISN) WON Output Rising Time VISP>VISN) WON Output Rising Time VISP <visn)< td=""> WON Output Falling Time VISP<visn)< td=""> Short Circuit Detection Debounce Time Short Circuit Detection Debounce Time</visn)<></visn)<></visn)<></visn)<></visn)<>	IAR='1', ZERO='0', IMCE='1', V _{ISN} =0V, V _{ISP} falls from 0.1V to 0V in 10µs	_	300	_	μs
t _{IMR_N(R10)}	IMON Output Rising Time	IAR='0', ZERO='0', IMCE='1', V _{ISP} =0V, V _{ISN} rises from 0V to 0.1V in 10µs		60	_	μs
t _{IMR_N(R50)}	(V _{ISP} <v<sub>ISN)</v<sub>	IAR='1', ZERO='0', IMCE='1', V _{ISP} =0V, V _{ISN} rises from 0V to 0.1V in 10µs	_	300	_	μs
t _{IMF_N(R10)}	IMON Output Falling Time	IAR='0', ZERO='0', IMCE='1', V _{ISP} =0V, V _{ISN} falls from 0.1V to 0V in 10μs		30	_	μs
t _{IMF_N(R50)}	(VISP <visn)< td=""><td>IAR='1', ZERO='0', IMCE='1', V_{ISP}=0V, V_{ISN} falls from 0.1V to 0V in 10μs</td><td>_</td><td>30</td><td>_</td><td>μs</td></visn)<>	IAR='1', ZERO='0', IMCE='1', V _{ISP} =0V, V _{ISN} falls from 0.1V to 0V in 10μs	_	30	_	μs
Short-Cu	rent Detection	· · ·		1		
V _{SCTH}	Short Circuit Detection Threshold voltage	ISCE='1', SC_[2:0]=0b001	_	105		mV
t _{SCDB}	Short Circuit Detection Debounce Time	ISCE='1', TD_[4:0]=0b00001 (default value)	_	6.32	_	μs
tscpd	Short Circuit Detection Propagation Delay Time	ISCE='1', TD_[4:0]=0b00000 INTB sink current=50µA. Propagation delay time from V _{ISP} >V _{SCTH} to INTB pulled 'Low'.	_	1	_	μs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Over-Tem	perature Detection					
		EN_OTD='1', OTDTH[1:0]=0b00	_	85	_	°C
		EN_OTD='1', OTDTH[1:0]=0b01	_	100	—	°C
TOTD	Threshold	EN_OTD='1', OTDTH[1:0]=0b10		125	Max	°C
	moonora	EN_OTD='1', OTDTH[1:0]=0b11(default value)	_	150	_	°C
T _{HYS}	Over-temperature Detection Hysteresis	EN_OTD='1'	_	20		°C

I²C Interface Characteristic

 $V_{\text{IN}}\text{=}36V$ and $T_{A}\text{=}25^{\circ}\text{C},$ unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
DC Char	acteristic					
VIH_I2C	Input High Threshold Voltage	_	2.5			V
VIL_I2C	Input Low Threshold Voltage	_	_	_	0.8	V
AC Char	acteristic					
f _{SCL}	Clock Frequency	_	—	_	400	kHz
t _{BUF}	Bus Free Time	Bus free time between STOP and START	1.3	_	—	μs
t _{hd: sta}	START Hold Time	After this period, the first clock pulse is generated	0.6	_	_	μs
t _{LOW}	SCL Low Time	_	1.3	_	—	μs
t _{ніGH}	SCL High Time	_	0.6		—	μs
t _{su: sta}	START Setup Time	Only relevant for REPEATED START	0.6		_	μs
t _{hd: dat}	Data Hold Time	_	0	_	—	ns
t _{su: dat}	Data Setup Time	—	100	—	—	ns
t _{R_I2C}	Rising Time	SDA and SCL	_		0.3	μs
t _{F_I2C}	Falling Time	SDA and SCL	_	—	0.3	μs
t _{su: sto}	STOP Setup Time		0.6		_	μs
t _{AA}	Output Valid from Clock				0.9	μs
t _{SP}	Input Filter Time Constant	SDA and SCL noise suppression time		_	20	ns
touт	I ² C Time-out	Default setting	_	32	—	ms

Note: These parameters are periodically sampled but not 100% tested.

Functional Description

I²C Serial Interface

The HT7Q2552 supports I²C serial interface. The I²C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). For the Standard Product, both lines are open-drain structure and two external pull-high resistors are required. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the Wired-AND function. Data transfer is initiated only when the bus is not busy.

Data Validity

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low.

START and STOP

- (1) A high to low signal transition on the SDA data line while SCL is high defines a START (S)
- (2) A low to high signal transition on the SDA data line while SCL is high defines a STOP (P)
- (3) START and STOP are always generated by the master. The bus is considered to be busy after the START. The bus is considered to be free again a certain time after the STOP.
- (4) The bus stays busy if a REPEATED START (Sr) is generated instead of a STOP. In the respect, the START and REPEATED START are functionally identical.

Byte Format

Every byte put on the SDA data line signal must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

Acknowledge

- (1) Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, the master generates an extra acknowledge related clock pulse.
- (2) A slave receiver which is addressed must generate an Acknowledge response signal after the reception of each byte.
- (3) The device that provides an acknowledge must pull down the SDA data line signal during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- (4) A master receiver must signal an end of data to the slave by generating a NOT Acknowledge response signal on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9th pulse to not acknowledge. The master will generate a STOP or Repeated START.

I²C Time-out Control

In order to reduce the I²C lockup problem due to reception of erroneous clock sources, a time-out function is provided. The I²C time-out function starts timing for the specified I²C time-out period (t_{OUT}) when receiving START (S) from I²C bus. The timer is reset by every falling edge of SCL data line signal and gets interrupted when receiving STOP (P). If the next falling edge of SCL data line signal or STOP (P) does not appear throughout the I²C time-out period (t_{OUT}), SDA and SCL data line signals are set to default states at the end of timing and meanwhile the registers remains unchanged. The I²C time-out is set to 32ms by default.

Slave Address

- (1) The slave address byte is the first byte received following the START condition from the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read or write operation to be performed. When R/W bit is '1', then a READ operation is selected. When R/W bit is '0', it selects WRITE operation.
- (2) The slave address of the HT7Q2552 is "1011101". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA data line signal.

R/W bit: 1=READ, 0=WRITE

Write Operation

An I²C write operation combines a START bit, a Slave address byte with a Write bit, a Register address byte, single or multiple Data bytes, and a STOP bit.

Read Sequence

The complete read mode consists of two stages. 1st stage: writes in the Register Address Byte to the device. 2nd state: reads out the single or multiple Data Bytes from the device.

I²C Register Map

The I²C register bit map is listed below.

Address	Acronym	Access Type	Value after POR	Register Description
00H	REG00	R/W	1000 0000	Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control
01H	REG01	R/W	0000 0000	Cell Balance Control
02H	REG02	R/W	0000 0000	Current Monitor Setting
03H	REG03	R/W	1000 0001	Short-Current Detection Setting 1
04H	REG04	R/W	0000 0001	Short-Current Detection Setting 2
05H	REG05	R/W	0000 0011	Short-Current Detection Control
06H	REG06	R/W	1001 0010	Over-temperature Detection and Thermal Sensor
07H	REG07	R	0000 0000	Chip Status
08H	REG08	R/W	0000 0000	Interrupt Mask
09H	REG09	R	0000 0000	Interrupt Flag

Bit	7	6	5	4	3	2	1	0		
Name	SLP1	SLP0	EN_VREF	EN_S	EN_CP	B2	B1	B0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
POR	1	0	0	0	0	0	0	0		
Bit 7~6	SLP1, SLP0: Sleep mode enable control									
	SLP1	SLP0		Action						
	0	0	Norm	al operation						
	0	1	Enter	sleep mode						
	1	0	Norm	al operation						
	1	1	Norm	al operation						
Bit 5	EN_VREF 0: Referent 1: Referent	Reference voltage of the second se	voltage outpu output functi output functi	It function er on is disabled on is enabled	able control d, VREF pin o , VREF pin o	output=0V utput=2.5V				
Bit 4	EN_S: Voltage 0: Voltage 1: Voltage	age monitor e monitor fui e monitor fui	function ena nction is disa nction is ena	ble control bled, VOUT bled, VOUT	pin output=0 pin output=(\	V / _{BAT1~8} -V _{BAT1~}	8)×1/2			
Bit 3	EN_CP: Ch 0: Charge 1: Charge	arge pump f pump funct pump funct	function enablished ion is disable ion is enable	ole control ed d, VCP pin=	Vcp					
Bit 2~0	B2, B1, B0:	8-to-1 analo	og multiplexe	er selection b	its (MSB: B2	, LSB: B0)				
	Control B2-	-B0 to select	which cell w	voltage to be	outputted to V	VOUT.				
	EN_S	B2	B1	B0	Vou	т (V)				
	0	_	_	_	(0				
	1	0	0	0	(V _{BAT1} -V	_{вато})×1/2				
	1	0	0	1	(V _{BAT2} -V	BAT1)×1/2				
	1	0	1	0	(V _{BAT3} -V	BAT2)×1/2				
	1	0	1	1	(V _{BAT4} -V	_{ватз})×1/2				
	1	1	0	0	(V _{BAT5} -V	_{BAT4})×1/2				
	1	1	0	1	(V _{BAT6} -V	BAT5)×1/2				
	1	1	1	0	(V _{BAT7} -V	_{ват6})×1/2				
	1	1	1	1	(V _{BAT8} -V	_{BAT7})×1/2				

• Sleep, Reference Voltage, Charge Pump and Voltage Monitor Control Register (00H)

*To avoid voltage drop caused by balance current, the cell balance function must be turned off during the voltage monitoring.

• Cell Balance Control Register (01H)

Bit	7	6	5	4	3	2	1	0						
Name	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
POR	0	0	0	0	0	0	0	0						
Bit 7	CB8: Enable 0: Balance 1: Balance	e control of t e switch Off e switch On	he cell balan	ce switch bet	ween VBAT	8 and VBAT?	7							
Bit 6	CB7 : Enable control of the cell balance switch between VBAT7 and VBAT6 0: Balance switch Off 1: Balance switch On													
Bit 5	CB6: Enable	e control of t	he cell balan	ce switch bet	ween VBAT	6 and VBAT	5	CB6: Enable control of the cell balance switch between VBAT6 and VBAT5						

- 0: Balance switch Off
- 1: Balance switch On

Bit 4	CB5 : Enable control of the cell balance switch between VBAT5 and VBAT4 0: Balance switch Off 1: Balance switch On	
Bit 3	CB4 : Enable control of the cell balance switch between VBAT4 and VBAT3 0: Balance switch Off 1: Balance switch On	
Bit 2	CB3 : Enable control of the cell balance switch between VBAT3 and VBAT2 0: Balance switch Off 1: Balance switch On	
Bit 1	CB2 : Enable control of the cell balance switch between VBAT2 and VBAT1 0: Balance switch Off 1: Balance switch On	
Bit 0	CB1 : Enable control of the cell balance switch between VBAT1 and VBAT0 0: Balance switch Off 1: Balance switch On	

• Current Monitor Setting Register (02H)

Bit	7	6	5	4	3	2	1	0
Name	IMCE	ZERO	IAR	Reserved	Reserved	Reserved	Reserved	Reserved
R/W	R/W	R/W	R/W	_	—		—	—
POR	0	0	0	0	0	0	0	0
Bit 7 Bit 6	IMCE: Enable current monitor 0: Disable current monitor 1: Enable current monitor ZERO: Execute zero correction of current monitor 0: The input of internal differential voltage amplifier circuit are connected to ISP and ISN pin 1: Both input of internal differential voltage amplifier circuit are connected to GND							
Bit 5	IAR: Select the voltage amplifying rate of current monitor 0: Voltage amplifying rate=10 1: Voltage amplifying rate=50							

Bit 4~0 Reserved bits

RS	IAR	Maximum discharge current (A)	Maximum charge current (A)
200	0	195	15
211152	1	38	2
Emo	0	78	6
5002	1	15	0.8

• Short-Current Detection Setting 1 Register (03H)

Bit	7	6	5	4	3	2	1	0
Name	ISCE1	ISCE0	Reserved	Reserved	Reserved	SC_2	SC_1	SC_0
R/W	R/W	R/W	—	_	—	R/W	R/W	R/W
POR	1	0	0	0	0	0	0	1

Bit 7~6 **ISCE1**, ISCE0: Enable short-current detection

ISCE1	ISCE0	Action
0	0	Short current detection is off
0	1	Short current detection is activated
1	0	Short current detection is off
1	1	Short current detection is off

Bit 5~3 Reserved bits

Bit 2~0 SC_2, SC_1, SC_0: Select the short-current detection threshold voltage (V_{SCTH}) of short-current detection

If the voltage of $\left(V_{\text{ISP}}\!-\!V_{\text{ISN}}\right)$ is greater than the threshold voltage, INTB is pulled low by internal switch.

SC_2	SC_1	SC_0	Threshold Voltage
0	0	0	50mV
0	0	1	100mV
0	1	0	150mV
0	1	1	200mV
1	0	0	250mV
1	0	1	300mV
1	1	0	350mV
1	1	1	400mV

Short-Current Detection Setting 2 Register (04H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	TD_4	TD_3	TD_2	TD_1	TD_0
R/W	—	_	—	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	1

Bit 7~5 Reserved bits

Bit 4~0 TD_4, TD_3, TD_2, TD_1, TD_0: Select the debounce time of short-current detection

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	0	0	0	0	0µs
0	0	0	0	1	32µs
0	0	0	1	0	64µs
0	0	0	1	1	96µs
0	0	1	0	0	128µs
0	0	1	0	1	160µs
0	0	1	1	0	192µs
0	0	1	1	1	224µs
0	1	0	0	0	256µs
0	1	0	0	1	288µs
0	1	0	1	0	320µs
0	1	0	1	1	352µs
0	1	1	0	0	384µs
0	1	1	0	1	416µs

TD_4	TD_3	TD_2	TD_1	TD_0	Debounce Time
0	1	1	1	0	448µs
0	1	1	1	1	480µs
1	0	0	0	0	512µs
1	0	0	0	1	544µs
1	0	0	1	0	576µs
1	0	0	1	1	608µs
1	0	1	0	0	640µs
1	0	1	0	1	672µs
1	0	1	1	0	704µs
1	0	1	1	1	736µs
1	1	0	0	0	768µs
1	1	0	0	1	800µs
1	1	0	1	0	832µs
1	1	0	1	1	864µs
1	1	1	0	0	896µs
1	1	1	0	1	928µs
1	1	1	1	0	960µs
1	1	1	1	1	992µs

• Short-Current detection Control Register (05H)

Bit	7 6 5 4		3	2	1	0		
Name	Reserved	Reserved	Reserved	Reserved	Reserved	IS_ACT_ DGCN	IS_ACT_ DGN1	IS_ACT_ DGN0
R/W	—	_	_	_	_	R/W	R/W	R/W
POR	0	0	0	0	0	0	1	1

Bit 7~3 Reserved bits

Bit 2	IS_ACT_DGCN: Control actions of DGCN when short-current event is detected								
	IS_ACT_DGCN can be written only when $V_{DCN}=0V$								
	0: Remain present output status of DGCN when short-current event is detected								
	1: Shut down and lock the output of DGCN when short-current event is detected.								
	The locked output of DGCN is released by the falling edge of DCN input signal.								
Bit 1	IS_ACT_DGN1: Control actions of DGN1 when short-current event is detected								
	IS_ACT_DGN1 can be written only when $V_{DN1}=0V$								
	0: Remain present output status of DGN1 when short-current event is detected.								
	1: Shut down and lock the output of DGN1 when short-current event is detected								
	The locked output of DGN1 is released by the falling edge of DN1 input signal.								
Bit 0	IS_ACT_DGN0: Control actions of DGN0 when short-current event is detected								
	IS_ACT_DGN0 can be written only when $V_{DN0}=0V$								
	0: Remain present output status of DGN0 when short-current event is detected								
	1: Shut down and lock the output of DGN0 when short-current event is detected								
	The locked output of DGN0 is released by the falling edge of DN0 input signal.								

Bit	7	6	5	4	3	2	1	0		
Name	EN_OTD	Reserved	Reserved	OTD_ACT	Reserved	Reserved	OTDTH1	OTDTH0		
R/W	R/W	_	_	R/W	_		R/W	R/W		
POR	1	0	0	1	0	0	1	0		
D'. 7										

• Over-temperature Detection and Thermal Sensor Register (06H)

Bit 7 EN_OTD: Enable Over-temperature detection

0: Disable Over-temperature detection

1: Enable Over-temperature detection

Bit 6~5 Reserved bits

Bit 4

- **OTD_ACT**: Control action of cell balance when internal over-temperature event is detected 0: Remain present turn-on status of cell balance when internal over-temperature event is detected 1: Turn off and lock all cell balance switches when internal over-temperature event is detected The locked switches of cell balance can only turn on the cell balance function again after resetting
 - the cell balance control register CB [8:1]=0x00.
- Bit 3~2 Reserved bits

Bit 1~0	OTDTH1.	OTDTH0:	Select the	over-tempera	ature detection	threshold
DILLO	OID IIII,	0101110.	Select the	over tempert	ature detection	unconora

Symbol	OTDTH1	OTDTH0	OTD threshold
T _{OTD1}	0	0	85°C
T _{OTD2}	0	1	100°C
Тотрз	1	0	125°C
Totd4	1	1	150°C

Chip Status Register (07H)

Bit	7	6	5	4	3	2	1	0			
Name	DGCN_ OUT	DGN1_ OUT	DGN0_ OUT	OTD_ST	EXT_WK2	EXT_WK1	Reserved	IS_SC_ST			
R/W	R	R	R	R	R R —			R			
POR	0	0	0	0 0 0 0 0							
Bit 7 Bit 6	DGCN_OUT: DGCN output status 0: DGCN output status is off (V _{DGCN} = V _{BAT}) 1: DGCN output status is on (V _{DGCN} = V _{CP}) DGN1_OUT: DGN1 output status										
Bit 5	0: DGN1 1: DGN1 DGN0_OU' 0: DGN0	output status output status T: DGN0 ou output status	is off (V_{DGN1} is on (V_{DGN1} tput status is off (V_{DGN0}	$= 0V)$ $= V_Z)$ $= 0V)$							
Bit 4	1: DGN0 OTD_ST: C 0: Junctio 1: Present OTD_ST go	output status OTD event status n temperatur junction ten bes to '0' whe	IS ON (VDGNO atus e is under T _O nperature is h en internal jui	$=V_Z$) TD higher than To nction tempe	otto. rature drops	under (Toto-	Г _{нуs}).				
Bit 3	 OTD_ST goes to '0' when internal junction temperature drops under (T_{OTD}-T_{HYS}). EXT_WK2: HVWK2 wake-up event status 0: Denotes that external wake-up event does not exist at HVWK2 pin 1: Denotes that external wake-up event exists at HVWK2 pin. When V_{HVWK2} remains higher than V_{WKTH} over 10us, EXT_WK2 will be set to '1', meanwhile SLP1 and SLP0 are reset to their POR values. 										
Bit 2	EXT_WK1 0: Denote 1: Denote (1) When V SLP1 ar	: HVWK1 w s that externa s that externa 'HVWK1 remai ad SLP0 are 1	ake-up event al wake-up ev al wake-up ev ns higher that reset to their	status vent does not vent exists at an V _{WKTH} ov POR values.	exist at HVV HVWK1 pir er 1ms, EXT	WK1 pin n or is writter 7_WK1 will	n by MCU. be set to '1'	, meanwhile			

EXT_WK1 is cleared to '0' immediately when V_{HVWK1} drops under 1.5V.

- (2) EXT_WK1 can be written as '1' by MCU for the purpose of sending a wake-up signal. EXT_WK1 have to be written as '0' and SLP[1:0] have to be written as 0b10 through I²C interface after EXT_WK1 is set as '1' by MCU, otherwise external wake-up event on HVWK1 pin cannot be recognized and the follow-up Sleep command will be failed.
- (3) Writing both EXT_WK1 and SLP[1:0] as '1' and 0b01 is NOT permitted for avoiding unpredictable status.
- (4) Reading EXT WK1 reveals the external wake-up even status of HVWK1 pin only.

Bit 1

Bit 0 IS_SC_ST: Short-current protection detecting status

- 0: $V_{\mbox{\scriptsize ISP}}$ is under $V_{\mbox{\scriptsize SCTH}}$
- 1: Short-current event is happening at Short-current detection (V_{ISP}>V_{SCTH})

Interrupt Mask Register (08H)

Reserved bit

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_MSK	EXT_ WK2_MSK	EXT_ WK1_MSK	Reserved	IS_SC_ MSK
R/W	—	_	—	R/W	R/W	R/W	—	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~5	Reserved	bits

Bit /~3	Reserved bits
Bit 4	OTD_MSK: Over-temperature detection INTB mask
	0: OTD_ST entry produces INTB pulse
	1: OTD_ST entry does not produce INTB pulse but still trigger OTD_FLG
Bit 3	EXT_WK2_MSK: External wake-up event detection INTB mask
	0: EXT_WK2 entry produces INTB pulse
	1: EXT_WK2 entry does not produce INTB pulse but still trigger EXT_WK2_FLG
Bit 2	EXT_WK1_MSK: External wake-up event detection INTB mask
	0: EXT_WK1 entry produces INTB pulse
	1: EXT_WK1 entry does not produce INTB pulse but still trigger EXT_WK1_FLG
Bit 1	Reserved bit
Bit 0	IS_SC_MSK: Short-current detection INTB mask
	0: IS_SC_ST entry produces INTB pulse

1: IS_SC_ST entry does not produce INTB pulse but still trigger IS_SC_FLG

Interrupt Flag Register (09H)

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	OTD_FLG	EXT_ WK2_FLG	EXT_ WK1_FLG	Reserved	IS_SC_ FLG
R/W	_	—	_	R	R	R	_	R
POR	0	0	0	0	0	0	0	0

Bit 7~5 Reserved bits

Bit 4	OTD_FLG: Over-temperature detection INTB flag
	0: Normal
	1: OTD_ST rising edge detected
	OTD_FLG is reset to '0' after I ² C master reads Interrupt Flag Register
Bit 3	EXT_WK2_FLG: HVWK2 external wake-up event detection INTB flag
	0: Normal
	1: EXT_WK2 rising edge detected
	EXT_WK2_FLG is reset to '0' after I ² C master reads Interrupt Flag Register.
Bit 2	EXT_WK1_FLG: HVWK1 external wake-up event detection INTB flag
	0: Normal
	1: EXT WK1 rising edge detected
	EXT_WK1_FLG is reset to '0' after I ² C master reads Interrupt Flag Register

Bit 1 Reserved bit

Bit 0 IS_SC_FLG: Short-current detection INTB flag 0: Normal 1: IS_SC_ST rising edge detected IS_SC_FLG is reset to '0' after I²C master reads Interrupt Flag Register.

Cell Voltage Monitor

B2, B1 and B0 are used to control the switches SW1~SW8 only if EN_S='1'. The control truth table is shown below. It transfers 1/2 of each battery cell's voltage to VOUT. It's recommended that to keep EN_S='0' when voltage scanning procedure is finish for power saving.

EN_S	B2	B1	B0	SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1	V out (V)
0	Х	Х	Х	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	(V _{BAT1} – V _{BAT0}) × 1/2
1	0	0	1	0	0	0	0	0	0	1	0	(V _{BAT2} – V _{BAT1}) × 1/2
1	0	1	0	0	0	0	0	0	1	0	0	(V _{BAT3} – V _{BAT2}) × 1/2
1	0	1	1	0	0	0	0	1	0	0	0	(V _{BAT4} – V _{BAT3}) × 1/2
1	1	0	0	0	0	0	1	0	0	0	0	(V _{BAT5} – V _{BAT4}) × 1/2
1	1	0	1	0	0	1	0	0	0	0	0	$(V_{BAT6} - V_{BAT5}) \times 1/2$
1	1	1	0	0	1	0	0	0	0	0	0	(V _{BAT7} – V _{BAT6}) × 1/2
1	1	1	1	1	0	0	0	0	0	0	0	(V _{BAT8} – V _{BAT7}) × 1/2

Cell Voltage Monitor Truth Table

Cell Balance

Multiple channels of cell balance switch can be turned on by host MCU via I²C interface. The register command byte of cell balance function is 01H, and the BIT7~BIT0 of Data byte correspond to the cell balance switch of each channel from SW8 to SW1, respectively. More than one switch can be turned on in the same time, but side-by-side cell balancing switches are recommended NOT to be turned on simultaneously to ensure equal balance current between each channel. After receiving turn on command, cell balance switch remains turned on until it is turned off by a '0' data or get a command of SLP0='1'. By setting OTD_ACT='1', when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically and cannot be turned on again until the locked states are released. All locked switches are released by setting CB[8:1]=0x00.

The typical cell balance current is 10mA at battery cell voltage 4.2V with series resistance 100 Ω , and the balance current can be adjusted by series resistors R1~R8. Note that for the reason of keeping voltage monitor accuracy, do not proceed voltage monitor while cell balance is activated.

CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	Balance Switch On/Off
1	0	0	0	0	0	0	0	SW1 On, others Off
0	1	0	0	0	0	0	0	SW2 On, others Off
0	0	1	0	0	0	0	0	SW3 On, others Off
0	0	0	1	0	0	0	0	SW4 On, others Off
0	0	0	0	1	0	0	0	SW5 On, others Off
0	0	0	0	0	1	0	0	SW6 On, others Off
0	0	0	0	0	0	1	0	SW7 On, others Off
0	0	0	0	0	0	0	1	SW8 On, others Off

Note: More than one switch can be turned On in the same time.

Current Monitor

A current monitor is fabricated for measuring battery discharge current. The current monitor with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. IMCE signal is the enable control of current monitor, and current monitors can be turned off by setting IMCE=*0' for power saving purpose.

Current measurement is accomplished with placing current sensing resistors connected between ISP and ISN pins, and measure input voltage difference of these pins. The ISP pin level should be higher than the ISN pin level in discharge state for a wide discharge current sensing range. While there is no current on sensing resistor or ZERO='1', IMON pin outputs a center voltage of 0.5V (typ.). When ZERO pin is set to '0', voltage difference of $(V_{ISP}-V_{ISN})$ is multiplied by the gain of amplifier which is denoted as $G_{IM(R10)}$ for a gain of 10 or $G_{IM(R50)}$ for a gain of 50 and outputted to IMON pin. The IMON pin output voltage amplify rate (G_{IM}) is selected by IAR.

The current monitor allows to use one sense resistor for charge and discharge current sensing. In discharge state, the voltage of ISP pin is greater than the ISN pin, and the output voltage of IMON pin is in the range of 0.5V (typ.) to 2.5V (VREF). In charge state, the voltage of ISP pin is smaller ISN pin, and the output voltage of IMON pin is in the range of 0.5V (typ.). IMON pin output voltage V_{IMON} is given by the following equation with the current sensing resistor R_s and its current I_s . The value of I_s is positive in discharge state and negative in charge state.

 $V_{IMON} = I_S \times R_S \times G_{IM} + 0.5$

Short-current Detection

A short-current detection and protection circuit are fabricated for detecting loading short event. Short current detection with ISP and ISN input pins must be connected to the sense resistor on DGN0 or DGN1 pin discharge path. The ISCE signal is the enable control of short current protection, and short-current protection can be turned off by setting ISCE='0' for power saving purpose. By means of comparing ($V_{ISP}-V_{ISN}$) to short-current detection threshold voltage (V_{SCTH}), the exceeding current caused by loading shorted can be detected.

Sleep Mode

When EXT_WK1 and EXT_WK2 signals are all '0' and receiving a sleep command from I²C master, it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. The I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit 7~6 to make the chip to enter the Sleep mode. During the sleep mode, all outputs are shut down and the capacitor of VREG is discharged through internal discharge resistor. The pre-regulator and high voltage wake-up circuit are the only blocks that are still working in the sleep mode and operates with an ultra-low standby current of $0.1 \mu A$ (typical).

When either the EXT_WK or EXT_WK2 signal is '1', the I²C master will set the SLP1 and SLP0 signals according to register (00H) Bit 7~6 and abandon the sleep command until the EXT_WK and EXT_WK2 are cleared to '0'.

EXT_WK1 Status EXT_WK2 Status		Sleep Mode Status
0	0	According to I ² C master command or POR default value.
0	1	0
1	0	0
1	1	0

Wake up from Sleep Mode

The HVWK1 and HVWK2 pins can be used for detecting charger plugged-in, switch turned on, or load connected events. When the device is under the Sleep mode and the EXT_WK1 and EXT_WK2 signals are all '0', it indicates that high voltage applied on the HVWK1 or HVWK2 pin is not detected. On the contrary, if either EXT_WK1 or EXT_WK2 signal is '1', it indicates that a wake-up event has occurred. If it is detected that the HVWK1 or HVWK2 pin is triggered by a pulse with requiring at least 5.5V voltage and 1ms width, the output of VREG will resume and the whole chip is ready for normal operation. The reference timing diagram of entering sleep

mode and waked up is listed below.

Discharge Path, i.e., Low-side Power Switch Gate Driver

The DGN0 and DGN1 are fabricated in the chip as discharge switch controllers. The output voltage of DGN0 and DGN1 pins are both clamped at 12V. A $370k\Omega$ pull-down resistor is integrated at discharge gate control input pin DN0 and DN1. While operating in Normal Operation or sleep mode, DGN0 and DGN1 are pulled down by 10Ω resistors. The control logic and output status of DGN0 and DGN1 pins in each state are listed in the table below.

Operating Mode	DN0	V(DGN0)	Note
Normal	0	0V	DGN0 output low to 0V
Operation	1	12V	DGN0 output high clamp to 12V
Sleep Mode	Х	0V	Pulled-low to GND by 10Ω.

22

Operating Mode	DN1	V(DGN1)	Note	
Normal	0	0V	DGN1 output low to 0V	
Operation	1	12V	DGN1 output high clamp to 12V	
Sleep Mode	Х	0V	Pulled-low to GND by 10Ω.	

Charge Path, i.e., High-side Power Switch Gate Driver

A high-side power switch gate driver DGCN is provided as a charger switch controller. A charge pump circuit is fabricated to provide BAT or VCP voltage between the gate and source node of external charge power switch. When the DCN pin is'0', DGCN output low, the voltage level varies with the BAT pin. When the DCN pin is'1', DGCN output high, the voltage level varies with the VCP pin. A $370k\Omega$ pull-down resistor is integrated at the control input pin DCN.

Input	Gate Driver Output	Nete
DCN	V(DGCN)	Note
0	BAT	DGCN output low, the voltage level varies with the BAT pin
1	VCP	DGCN output high, the voltage level varies with the VCP pin

Over-temperature detection

An over-temperature detection (OTD) is integrated in the HT7Q2552 to prevent from IC overheated while cell balance function is turned on. According to the setting of register (06H), the over-temperature detection function is active when $EN_OTD=$ ⁺1' and any of the Cell Balance switch is turned on. When internal junction temperature $T_J>T_{OTD}$, OTD_ST is set to '1' and OTD_FLG is triggered as '1' if $OTD_MSK=$ '0'. OTD_ST goes to '0' when internal junction temperature drops under ($T_{OTD}-T_{HYS}$).

By setting $OTD_ACT=`1'$, when internal junction temperature exceeds T_{OTD} , all balance switched are turned off and locked automatically. All locked switches cannot be turned on again until they are released by setting CB[8:1]=0x00.

Application Information

VIN, VREG Capacitors

The VIN input capacitor C1 and VREG output capacitor C2 are 4.7μ F for better input noise filtering and output load transient behavior.

VIN_LDO Filter Recommendation

The input capacitor C1 for VIN_LDO is used for lowering the input voltage ripple while the battery is supplying a highly inductive load in PWM mode. The recommanded value of VIN_LDO input capacitor C1 is 4.7μ F. The input resistor R9 of VIN_LDO is able to reduce the inrush current during battery assembly, and also it shares the heat on chip while VREG outputs a large current in normal operation mode. The recommanded value for VIN_LDO input resistor R9 differs from different battery cell number applications. The recommended resistance values of VIN_LDO input resistor R9 with different battery cell numbers and the corresponding VREG maximum output current are listed in the table below.

P+

	Battery Cell Number	Input Resistor (R9)	VREG Maximum Output Current	
	3S	15Ω	50mA	
-	4S	43Ω	50mA	
	5S	110Ω	40mA	
	6S	220Ω	35mA	
-	7S	330Ω	30mA	
-	8S	430Ω	30mA	
R9 C1 Rn W	VIN			. to MCU VD
VBn				

It is necessary to select an appropriate package for VIN_LDO input resistor (R9) in order to prevent it being damaged from overheated. The maximum power of the resistor is easily calculated by:

 $P_{R9,MAX}$ =(I_{REG})²×R9, where I_{REG} is the maximum VREG output current

It is recommended to choose the resistor package that its maximum rated power is greater than twice the $P_{R9.MAX}$.

VBAT1~8 Protection and Balance Resistor Selection

The VBAT1~8 represents the VBAT1~VBAT8 pins. Series resistors RBn includes R1~R8, which not only suppress inrush and noise spikes applied to I/O pins, they affect cell balance current as well. Larger resistance of R1~R8 provide better protection to VBAT1~8 and other I/O pins, but they lower the cell balance current instead. The cell balance current of each channel is configured by internal balance resistors and external series resistors. Because the balance current of Cell 1 flows out through the GND pin while using the standard version product, the balance current of Cell 1 is greater than that of other cells. Considering inrush spike protection to I/O pins and noise reduction of voltage monitor, the recommended typical values of resistor R0~R8 are 100 Ω , and the charge balancing current I_{CB} is 10mA while the voltage of battery cell is 4.2V. If larger balancing current is needed, the recommended minimum values of resistors R1~R8 are 30 Ω which provide 23mA while the voltage to start the balance function is 3V. The recommended VBAT1~8 series resistors and their related charge balancing current are listed in the table below.

Resistance of R0~R8 (R _{Bn}) Typical balancing current (@V _{Bn} =4.2V) (I _{CB})		Note	
30Ω	23.4mA	Minimum value of resistor R0~R8	
51Ω	19mA	—	
100Ω	11.5mA	_	
150Ω	8.5mA	—	

Increase Charging Balance Current

Refer to the following application circuits, when cell balance is turned on internally, the R1 will generate a voltage drop to make transistor Q1 conductive. Set the V_{B1} =4.2V, R1=R4=R2=100R, balanced current (IC) is 150mA, it is recommended Q1 to choose NPN transient HFE≥85, $V_{CE(sat)} \leq 0.1V$, $V_{BE (sat)} \approx 0.7V$, and calculate R3 according to the following formula:

- 1. R3= $(V_{B1}-V_{CE(sat)})/IC$
- 2. R3 selects resistance watts based on the calculation result

 $P_D = ((V_{B1} - V_{CE(sat)})^2)/R_3$

Charger and Switch Status Detection for MCU

The High-voltage wake-up function HVWK1 and HVWK2 pins are capable of detecting charger plugged in or load switched On. The recommended wake-up function external circuit is listed below. When a charger is plugged in or load switch is on, the voltage of HVWK1 is triggered to be larger than V_{WKTH} and set EXT_WK1 signal as '1'. After the charger or switch is removed or turned off, EXT_WK1 signal is reset to '0'. An MCU can acquire the charger or switch status by read EXT_WK1 signal through the I²C interface. Therefore, by means of reading the EXT_WK1 or EXT_WK2 signal status, additional charger or switch detection circuit for MCU are not necessary. The circuit below is typical application for high-voltage wake-up function and optional circuit for charger plugged-in detection while SW is ON.

If independent charger and switch detection is required, an optional circuit for charger plugged-in detection is recommended. With this optional circuit, MCU can independently detect charger plugged-in event and start battery charge procedure.

Voltage Spike Suppression Method

Simplified Typical BMS System Discharge Path Diagram

Most battery-management systems would monitor charge and discharge current to prevent over-current damage. Due to the parasitic inductance on conducting wires and PCB layout connections, large voltage spike may occurs while the MCU-controlled MOS rapidly shuts down the charge or discharge current, and this spike may damage the device VBAT1~8 or VIN pins. Any voltage spike on VBAT1~8 and VIN pins should not over the limitation in Absolute Maximum Ratings, which is 48V. Four recommended measures listed below would help to reduce the voltage spike.

- 1. Make the external conducting wire and PCB layout connections as short as possible where large charge or discharge current flows.
- 2. Adjust the slew rate of MOS switch with the gate resistor R_G . Turn off the MOS with slower slew rate for lower voltage spike, and the tradeoff is a slower protection response time.
- 3. Add a capacitor (C_{DS}) between drain and source node of the MOS switch as shown above. The recommended capacitance is $0.1\mu F$ to $0.22\mu F$.
- 4. Add a 39V Zener diode between the highest voltage potential node of battery cells and GND.

Typical Application Circuit

8S Battery Monitoring Typical Application Circuit

Note: 1. The resistance of R0~R8 can be adjusted to fit desired balance current. The recommended resistance of R0~R8 are listed in the 'VBAT1~8 Protection and Balancing Resistor Selection' section.

- 2. If less than 8 serial batteries are used, connect the unused VBAT1~8 to the highest voltage potential. Do not leave any VBAT1~8 pin floating in order to prevent damage to the device.
- 3. The maximum capacitance of C2 is $4.7\mu F.$

5S Battery Monitoring Typical Application Circuit

- 2. If less than 8 serial batteries are used, connect the unused VBAT1~8 to the highest voltage potential. Do not leave any VBAT1~8 pin floating in order to prevent damage to the device.
- 3. The maximum capacitance of C2 is $4.7\mu F$.

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

SAW Type 32-pin QFN (4mm×4mm×0.75mm) Outline Dimensions

Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	0.028	0.030	0.031	
A1	0.000	0.001	0.002	
A3	0.008 REF			
b	0.006	0.008	0.010	
D	0.157 BSC			
E	0.157 BSC			
е	0.016 BSC			
D2	0.100	_	0.108	
E2	0.100	_	0.108	
L	0.010	_	0.018	
К	0.008	_	—	

Symbol	Dimensions in mm				
Symbol	Min.	Nom.	Max.		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3	0.203 REF				
b	0.15	0.20	0.25		
D		4.00 BSC			
E	4.00 BSC				
е	0.40 BSC				
D2	2.55	—	2.75		
E2	2.55	_	2.75		
L	0.25		0.45		
К	0.20	_	_		

Singel 3 | B-2550 Kontich | Belgium | Tel. +32 (0)3 458 30 33 info@alcom.be | www.alcom.be Rivium 1e straat 52 | 2909 LE Capelle aan den IJssel | The Netherlands Tel. +31 (0)10 288 25 00 | info@alcom.nl | www.alcom.nl

Copyright[®] 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.