

CA-IF1044Ax Automotive CAN Transceiver with Standby Mode

1. Features

- Meets the ISO 11898-2:2016 and ISO 11898-5:2007 physical layer standards
- Support classic CAN and 5 Mbps CAN FD
- Low-Current Standby Mode: 7.5uA
- Ideal passive behavior when unpowered
 - Bus and logic terminals are high impedance (no load)
 - Power up/down with glitch free operation on bus and RXD output
- The I/O voltage range supports 3.3V and 5V microcontrollers (MCU)
- Integrated protection increases robustness
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Undervoltage protection on V_{CC} and V_{IO} supply terminals
 - Transmitter dominant timeout prevents lockup, data rates down to 4 kbps
 - Thermal shutdown protection (TSD)
- Typical loop delay: 110ns
- Common-mode input voltage of the receiver: ±30V
- -55°C to 150°C Junction Temperatures Range
- Available in SOIC8 and DFN8 packages
- AEC-Q100 Qualified and -40°C to 125°C Grade 1 operating temperature range

2. Applications

- Body electronics
- Power system
- Automotive gateway
- Advanced driver assistance systems (ADAS)
- In-vehicle infotainment system
- Thermal management module
- On-board sensor module

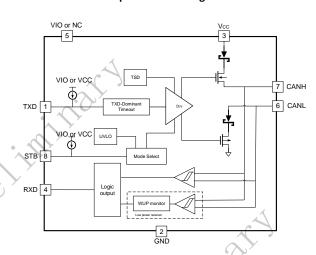
3. General Description

The CA-IF1044Ax devices are control area netw transceivers with integrated protection for indu

automotive applications. These devices are designed for using in CAN FD (flexible data rate) networks up to 5 Mbps data rate and feature ±42V extended fault protection on the CAN bus for equipment where overvoltage protection is required. This family of CAN transceivers also incorporate an input common-mode range(CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V, well suited for applications where ground planes from different systems are shifting relative to each other.

The CA-IF1044Ax series devices include a dominant timeout to prevent bus lockup caused by controller error or by a fault on the TXD input. When the TXD remains in the dominant state (low) for longer than t_{DOM} , the driver is switched to the recessive state, releasing the bus and allowing other nodes to communicate. The transceivers feature a STB pin for two modes of operation: normal high-speed mode and standby mode for low current consumption. Also, the CA-IF1044AVx devices in this family provide low level translation to simplify the interface with 5V, or 3.3V low voltage CAN controllers.

The CA-IF1044Ax family of devices is available in a standard 8-pin narrow-body SOIC package and small size 8-pin DFN package, operates over the -55°C to +150°C junction temperature range. AEC-Q100 qualified for automotive applications.


Table 3-1. Device Information

Part number	Package	Package size(NOM)
CA-IF1044AS-Q1	SOIC8	4.9mm x 3.9mm
CA-IF1044AVS-Q1	30108	4.9mm x 3.9mm
CA-IF1044AD-Q1	DENO	3.0mm x 3.0mm
CA-IF1044AVD-Q1	DFN8	3.0mm x 3.0mm

Simplified Block Diagram

Ordering Information

Table 4-1. Ordering Information

Part Number	Features	Package	
CA-IF1044AS-Q1	Pin 5 = NC	SOIC8	
CA-IF1044AVS-Q1	With low level translation, Pin 5 = V_{IO}	SOIC8	
CA-IF1044AD-Q1	Pin 5 = NC	DFN8	
CA-IF1044AVD-Q1	With low level translation, Pin 5 = V _{IO}	DFN8	
SIMIL			

Rightary

ininary

Table of Contents

e) imilii

ininary

1.	Featu	res	1
2.	Appli	cations	1
3.	Gene	ral Description	1
4.		ring Information	
5.	Revisi	ion History	3
6.	Pin Co	onfiguration and Functions	4
7.	Specif	fications	5
	7.1.	Absolute Maximum Ratings	
	7.2.	ESD Ratings	5
	7.3.	Recommended Operating Conditions	
	7.4.	Thermal Information	5
	7.5.	Electrical Characteristics	6
	7.6.	Switching Characteristics	8
8.	Paran	neter Measurement Information	9
9.	Detail	led Description	13
	9.1.	CAN Bus Status	13
	9.2.	Receiver	13
	9.3.	Transmitter	14

	9.4.	Prot	ection Functions	15
		9.4.1.	Undervoltage LockoutFault Protection	15
		9.4.2.	Fault Protection	16
		9.4.3.	Thermal Shutdown	
		9.4.4.	Current-Limit	16
		9.4.5.	Transmitter-Dominant Timeout	16
	9.5.	Unp	owered Device	17
	9.6.	Floa	ting Terminals	17
	9.7.	Ope	rating Mode	17
		9.7.1.	Normal Mode	
		9.7.2.	Standby and Wake-up	17
10.		Applic	cation Information	18
11.		Packa	ge Information	20
12.	. (Solde	ring Temperature (reflow) Profile	22
13.	<i>)</i> ,	Tape a	and Reel Information	23
14.	Y	Apper	ndix	24
15.		Impor	tant Statement	25

5. Revision History

Revision Number		Description	~~	Page Changed
Preliminary	4	N/A	111	N/A
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	(0)			
			\bigcirc	
•				
	<i>Y</i>			
				•^
\Diamond		. 1		0
				17,

Preliminary

Preliminari

Preliminary

6. Pin Configuration and Functions

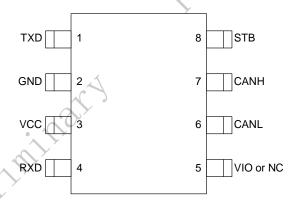


Figure 6-1. CA-IF1044Ax Pin Configuration

Table 6-1. CA-IF1044Ax Pin Configuration and Description

ı					
١	Pi	n #	Pin		
-	CA-IF1044S-Q1	CA-IF1044VS-Q1	Name	Type	Description
-	CA-IF1044D-Q1	CA-IF1044VD-Q1			
	()				Transmit Data Input, Drive TXD high to set the driver in the recessive state.
	1	1	TXD	Digital I/O	Drive TXD low to set the driver in the dominant state. TXD is a CMOS/TTL
	• 1			^^	compatible input from a CAN controller with an internal pull-up to V _{CC} or V _{IO} .
	2	2	GND	GND	Ground.
4	3	3	V_{CC}	Power	+5V Supply Voltage. Bypass V _{CC} to GND with an at least 0.1μF capacitor.
	4	4	RXD	Digital I/O	Receive Data Output, RXD is LOW for dominant bus state and HIGH for recessive bus state. RXD is a CMOS/TTL compatible output from the physical bus lines CANH and CANL.
ĺ	5	=	NC	NC	No connect.
•	-	5	V _{IO}	Power	Logic Supply Input. V_{IO} is the logic supply voltage for the input/output between the CAN transceiver and controller. V_{IO} allows full compatibility from +1.8V to +5.5V logic on all digital lines. Bypass to GND with a $0.1\mu F$ capacitor. Connect V_{IO} to V_{CC} for 5V logic compatibility.
ı	6	6	CANL	Bus I/O	CAN bus line low.
İ	7	7	CANH	Bus I/O	CAN bus line high.
•	8	8	STB	Digital I/O	Standby Mode. A logic-high on STB pin or leave it open to select the standby mode. In standby mode, the transceiver is not able to transmit data and the receiver is in low-power mode. A logic-low on STB pin puts the transceiver in normal operating mode.
7			R.		Tall.

ininary

7. Specifications

7.1. Absolute Maximum Ratings

_ ^ ^	PARAMETER	MIN	MAX	UNIT
V _{CC}	5V Bus Supply Voltage Range	-0.3	7	\mathcal{C} v
V _{IO}	Logic Supply Voltage Range	-0.3	7	V
V_{BUS}	CAN Bus I/O voltage range (CANH,CANL)	-42	42	V
V _(DIFF)	Max differential voltage between CANH and CANL	-42	42	V
$V_{(Logic_Input)}$	Logic input terminal voltage range (TXD, S)	-0.3	+7 and < VIO+0.3	V
V _(Logic_Output)	Logic output terminal voltage range (RXD)	-0.3	+7 and < VIO+0.3	V
I _{O(RXD)}	RXD (receiver) terminal output current	-8	8	mA
T _J	Virtual junction temperature range	-55	150	°C
T _{STG}	Storage temperature range	-65	150	℃

Note:

7.2. ESD Ratings

Parameters	TEST CONDITIONS	VALUE	UNIT
CA-IF1044Ax			
HBM¹ ESD	All pins	±8000	V
CDM ESD	All pins	±2000	V
System Level ESD	CAN bus terminals (CANH, CANL) to IEC 61000-4-2: unpowered contact discharge.	±6000²	V

Note:

- 1. Per AEC Q100-002, HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
- 2. Testing on System Board Level.

7.3. Recommended Operating Conditions

	PARAMETER	MIN TYP	MAX	UNIT
V _{CC}	Supply Voltage Range	4,5	5.5	V
V _{IO}	Logic Supply Voltage Range	3.0	5.5	V
I _{OH(RXD)}	RXD terminal high level output current	-2 [°]		mA
I _{OL(RXD)}	RXD terminal low level output current		2	mA

7.4. Thermal Information

	Thermal Metric	1	DFN8	SOIC8	UNIT
$R_{\theta JA}$	Junction to Ambient	~'0'	40	170	°C/W

L. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.

7.5. Electrical Characteristics

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted).

•,	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	PARAIVIETER	TEST CONDITIONS	IVIIIV	III I	VIAX	ONIT
FOWER	,	TXD=0V, STB=0V, R_L = 60 Ω (dominant)			-	
		see Figure 8-1		45	70	mA
) <i>Y</i>		TXD=0V, STB=0V, RL=50 Ohm (dominant)		F04	00	0
•		see Figure 8-1		50	80	mA
		TXD=0V, STB=0V, CANH=-12V (dominant)	(2.	110	mA
Icc	5V Supply Current	see Figure 8-1		<u> </u>		
-00	or suppry surrous	TXD=V _{CC} or V _{IO} , STB=0V, RL=50 Ohm (recessive) see Figure 8-1	$\langle \rangle \rangle$	4	7	mA
	• (1)	TXD = STB = V _{IO} (standby, CA-IF1044Vx), RL = 50 Ohm				μΑ
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	see Figure 8-1		0.5	5	μΛ
		TXD = STB = V _{CC} (standby, CA-IF1044S-Q1/CA-IF1044D-				μΑ
		Q1), RL = 50 Ohm, see Figure 8-1		7.5	17	
	1/O Soundly Comp	TXD = 0V, STB = 0V, RXD open (CA-IF1044Vx)		160	300	μΑ
I _{IO}	I/O Supply Current	TXD= V _{IO} , STB= V _{IO} , RXD open (CA-IF1044Vx)		7	12	μΑ
	V _{CC} UVLO Threshold	Rising		4.1	4.45	V
V_{uv_vcc}	V _{cc} UVLO Threshold	Falling	3.7	3.9	4.25	V
VHYS	V _{CC} UVLO Hysteresis voltage	Hysteresis voltage		200		mV
	V _{IO} UVLO Voltage(CA-IF1044AVS-	. 1				Y
\ \^^1	Q1)	Dieter		2.65	2.05	V
	/V _{CC_sd} UVLO Voltage(CA-	Rising		2.65	2.85	V
Vuv_ _{VIO} /	IF1044AS-Q1)					
$V_{uv_vcc_sd}$	V _{IO} UVLO Voltage(CA-IF1044AVS-	\Diamond		. (
	Q1)	Falling		2.5	2.7	V
r*	/V _{CC_sd} UVLO Voltage(CA-				2.7	
	IF1044AS-Q1)			0		
	V _{IO} UVLO Hysteresis voltage (CA-					
$V_{HYS(UV_VIO/}$	IF1044AVS-Q1)	Hysteresis voltage		150		mV
VCC_sd)	/V _{CC_sd} UVLO Hysteresis voltage (CA-	_	1			
LOCIC INTE	IF1044AS-Q1) RFACE (Mode select input, STB)		y .			
			0.7xV _{cc} ¹	 		V
V _{IH}	High-level input voltage		U./XV _{CC} ¹	·	0.200. 1	V
V _{IL}	Low-level input voltage	$STB = V_{CC} = V_{IO} = 5.5V$	-2		0.3Xv _{CC} ¹	
I _{IH}	High-level input leakage current Low-level input leakage current	$STB = 0V, V_{CC} = V_{10} = 5.5V$ $STB = 0V, V_{CC} = V_{10} = 5.5V$	-20	 	-2	μΑ
I _{IL}	Unpowered leakage current	STB=5.5V, V _{CC} = V _{I0} = 0V	-20		1	μΑ
I _{lek(off)}			-1		1	μΑ
4	RFACE (CAN transmit data input, TXI	2)	0.7Xv _{CC} ¹		•	
V _{IH}	High-level input voltage		0.77000		0.01/	V
V _{IL}	Low-level input voltage				0.3Xv _{Cc} ¹	V
I _{IH}	High-level input leakage current	$TXD = V_{CC} = V_{IO} = 5.5V$	-2.5	0	1	μΑ
I _{IL}	Low-level input leakage current	$TXD = 0V$, $V_{CC} = V_{10} = 5.5V$	-200	-100	-60	μΑ
I _{lek(off)}	Unpowered leakage current	$TXD = 5.5V$, $V_{CC} = V_{IO} = 0V$	110	160	240	μΑ
C _i	Input capacitance	$V_{IN} = 0.4*sin(4E6*\pi*t) + 2.5V$		5		pF
	FACE (CAN receive data output, RXD)	102 5	T			1
V _{OH}	High-level output voltage	lo = -2mA	0.8Xv _{CC} ¹			V
V _{OL}	Low-level output voltage	Io = +2mA	4		0.2Xv _{CC} ¹	V
I _{lek(off)}	Unpowered leakage current	STB = 5.5V, $V_{CC} = 0V$, $V_{IO} = 0V$	-1	0	1	μΑ
•	ature protection					T a -
T _{TSD}	Thermal shutdown temperature		1	185		°C
	Thermal shutdown temperature		1			İ
T _{TSD_HYS}	threshold hysteresis			15		°C

Electrical Characteristics (continued)

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
CAN BUS D	RIVER				7,>
		TXD = low, STB = 0V, R_L =50 -65 Ω , CL=open, RCM=open,	2.75	4.5	V
V _{O(DOM)}	Bus output voltage (dominant)	CANH, see Figure 8-1 TXD = low, STB = 0V, R_L = 50 -65 Ω , CL=open, RCM=open,	0.5	2.25	V
		CANL, see Figure 8-1 TXD = low, STB=0V, RL=45-50 Ohm, RCM open, see Figure	1.4	3.3	V
V _{OD(DOM)}	Bus output differential voltage	TXD = low, STB=0V, RL=50-65 Ohm, RCM open, see Figure	1.5	3.0	V
V OD(DOM)	(dominant)	TXD = low, STB = 0V, RL=2240 Ohm, RCM open, see Figure	1.5	5.0	V
		8-1	1.5		, v
V _{O(REC)}	Bus output voltage (recessive)	TXD=V _{CC} or V _{IO} , V _{CC} = V _{IO} , STB=0V, RL=open, RCM=open, CANH,CANL, see Figure 8-1	2	0.5xV _{CC} 3	V
$V_{OD(REC)}$	Bus output differential voltage	TXD = high, STB=0V, R_L =60 Ω , CL=open, RCM=open, see Figure 8-1	-120	12	mV
▼ OD(REC)	(recessive)	TXD = high, STB=0V, no load, CL=open, RCM=open, see Figure 8-1	-50	50	mV
		STB=V _{IO} , RL open, RCM open, CANH	-0.1	0.1	V
$V_{O(STB)}$	Bus output at standby mode	STB= V ₁₀ , RL open, RCM open, CANL	-0.1	0.1	V
	1	STB= V _{IO} , RL open, RCM open, CANH-CANL	-0.2	0.2	V
~	3	TXD = low, STB=0V, CANL open, V CANH= -5V to 40V, see	-		
OS(SS_DOM)	Short-circuit current (dominant)	Figure 8-7	115		mA
IOS(SS_DOM)	Short-circuit current (dominant)	TXD = low, STB=0V, CANH open, V _{CANL} = -5V to 40V, see Figure 8-7		115	
OS(SS_rec)	Short-circuit current (recessive)	TXD = high, STB=0V, VBSU = CANH = CANL = -27V to 32V, see Figure 8-7	-6	6	mA
V _{SYM}	Transient symmetry (dominant or recessive)	R_L = 60 Ω, STB=0V, R_{CM} open, C_{split} =4.7nF, RCM open , TXD = 250kHz, 1MHz, 2.5M Hz, see Figure 8-1	0.9	1.1	V/V
V _{SYM_DC}	DC Output symmetry (dominant or recessive)	RL =60 Ω , STB = 0, R _{CM} open, see Figure 8-1	-0.4	0.4	V
CAN RECEIV			× -		ı
V _{CM}	Common-mode input range	Regular mode and standby mode, RXD output valid, see Figure8-2	-30	+30	V
	Input differential threshold voltage at	STB = 0V, V _{CM} from -20V to 20V, see Figure 8-2	500	900	mV
V _{IT}	normal mode	STB=0V, V _{CM} from -30V to 30V, see Figure 8-2	400	1000	mV
V _{IT(STB)}	Input differential threshold at standby mode	STB = high, Vcm from -12V to 12V(3≤Vio≤5.5V, no VIO ignore), see Figure8-2	400	1150	mV
	Input differential threshold voltage at	STB=0V, V _{CM} from -20V to 20V, see Figure 8-2	0.9	9	
V _{DIFF_D}	normal mode (dominant)	STB=0V, V _{CM} from -30V to 30V, see Figure 8-2	1	9	
	Input differential threshold voltage at	STB=0V, V _{CM} from -20V to 20V, see Figure 8-2	-4	0.5	
√ _{DIFF_R}	normal mode (recessive)	STB=0V, V _{CM} from -30V to 30V, see Figure 8-2	-4	0.4	_ v
V _{DIFF_D(STB)}	Input differential threshold voltage at standby mode (dominant)	STB=high, see Figure 8-2	1.15	9	V
V _{DIFF_R(STB)}	Input differential threshold voltage at standby mode (recessive)	STB=high, see Figure 8-2	-4	0.4	V
V _{DIFF_(HYST)}	Input differential threshold hysteresis	normal mode	 	100	mV
- PILL_(U131)	CANH/CANL input resistance	TXD = high, STB = 0, V _{CM} = -30V to 30V	10	40	kΩ
RINI	Something of the imputinguitation	-	20	80	kΩ
	Differential input resistance	1 1X1) = nign		30	1/77
R _{DIFF}	Differential input resistance	TXD = high, STB = 0, V _{CM} = -30V to 30V		າ	0/_
R _{DIFF} R _{DIFF (M)}	Input resistance matching	V _{CANH} = V _{CANL} = 5V	-2	2	% ^
R _{IN} R _{DIFF} R _{DIFF (M)} LKG C _{IN}				2 8 24	% μA pF

7.6. Switching Characteristics

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted).

CD propagation delay ecessive to dominant) CD propagation delay ominant to recessive) CD-dominant Timeout CD propagation delay ecessive to dominant) CD Propagation delay ominant to recessive)	STB = 0, R_L =60 Ω , C_L =100pF, see Figure 8-1 STB = 0, R_L =60 Ω , C_L =100pF, see Figure 8-1 R_L =60 Ω , C_L open, see Figure 8-5 STB = 0, C_{RXD} =15pF, see Figure8-2 STB = 0, C_{RXD} =15pF, see Figure8-2	2.5	38 45 6.8 73	10	ns ns ms
Ecessive to dominant) ED propagation delay ominant to recessive) ED-dominant Timeout ED propagation delay ecessive to dominant) ED Propagation delay	STB = 0, R_L =60 Ω , C_L =100pF, see Figure 8-1 R_L =60 Ω , C_L open, see Figure 8-5 STB = 0, C_{RXD} =15pF, see Figure8-2	2.5	6.8	10	ns ms
CD propagation delay ecessive to dominant) CD Propagation delay	$R_L=60 \Omega$, C_L open, see Figure 8-5 $STB=0$, $C_{RXD}=15pF$, see Figure 8-2	2.5	6.8	10	ms
CD-dominant Timeout CD propagation delay ecessive to dominant) CD Propagation delay	STB = 0, C _{RXD} =15pF, see Figure8-2	2.5	<u> </u>	10	I
ecessive to dominant) (D Propagation delay	STB = 0, C _{RXD} =15pF, see Figure8-2	S.	<u> </u>		ns
ecessive to dominant) (D Propagation delay		57	73		ns
	STB = 0, C _{RXD} =15pF, see Figure8-2				
			75		ns
tal loop delay, driver input (TXD) to ceiver output (RXD), recessive to ominant	R_L =60 Ω , C_L =100pF, see Figure 8-3		110	185	ns
tal loop delay, driver input (TXD) to ceiver output (RXD), dominant to cessive	R_L =60 Ω , C_L =100pF, see Figure 8-3		115	185	ns
ode change time, from normal to andby or from standby to normal	see Figure 8-4		12	45	μs
ter time for a valid wake-up pattern	see Figure 8-4	0.5	Á	1.8	μs
ıs wake-up timeout	see Figure 8-4	0.8	100	10	ms
			77		
t time on CAN bus output pins with	STB = 0. R_1 =60 Ω . C_1 =100pF. C_{RXD} =15pF. see		0 -		
	· · · · · · · · · · · · · · · · · · ·	435	,	530	ns
t time on CAN bus output pins with	STB = 0, R_L =60 Ω , C_L =100pF, C_{RXD} =15pF, see Figure 8-6	155		210	ns
t time on RXD output pins with	STB = 0, R_L =60 Ω , C_L =100pF, C_{RXD} =15pF, see Figure 8-6	400		550	ns
t time on RXD output pins with	STB = 0, R_L =60 Ω , C_L =100pF, C_{RXD} =15pF, see Figure 8-6	120		220	ns
eceiver timing symmetry with t _{BIT(TXD)}	STB = 0, R_L =60 Ω , C_L =100pF, C_{RXD} =15pF, see Figure 8-6	-65		40	ns
ceiver timing symmetry with t _{BIT(TXD)}	STB = 0, R_L =60 Ω , C_L =100pF, C_{RXD} =15pF, see Figure 8-6	-45		15	ns
t c c c a t li lt t t t t t t t t t	tal loop delay, driver input (TXD) to be server output (RXD), dominant to be server output (RXD), dominant to be server output (RXD), dominant to ondo dominant	Tall loop delay, driver input (TXD) to deliver output (RXD), dominant to desiver output (RXD), dominant to deliver time, from normal to desiver time for a valid wake-up pattern deriver time for a valid wake-up pattern deriver time on CAN bus output pins with defined on CAN bus output pins with defined on CAN bus output pins with defined on CAN bus output pins with defined on RXD output pins with defined	Tal loop delay, driver input (TXD) to be between output (RXD), dominant to be betwee	Tal loop delay, driver input (TXD) to be between output (RXD), dominant to be between output (RXD), dominant to be between output (RXD), dominant to be between output (RXD), dominant to be between output (RXD), dominant to be between output (RXD), dominant to be between output (RXD), dominant to be between output promised by the between o	Tal loop delay, driver input (TXD) to be delay, driver input (TXD) to delay delay, driver input (TXD) to delay, driver input (TXD) to delay delay, driver input (TXD) to delay delay, driver input (TXD) to delay

ininary

2 ininary

8. Parameter Measurement Information

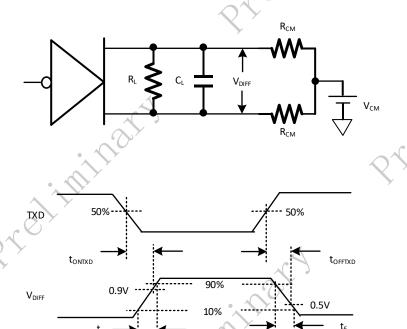


Figure 8-1. Transmitter Test Circuit and Timing Diagram

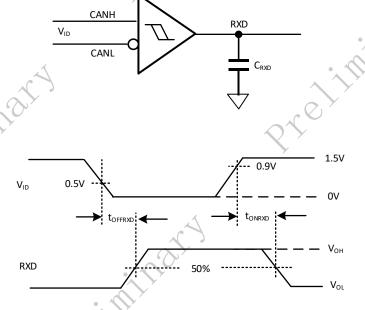


Figure 8-2. Receiver Test Circuit and Measurement

IMITATY

Preliminary

2) ininary

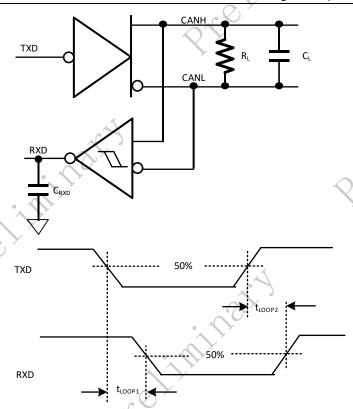


Figure 8-3. TXD to RXD Loop Delay

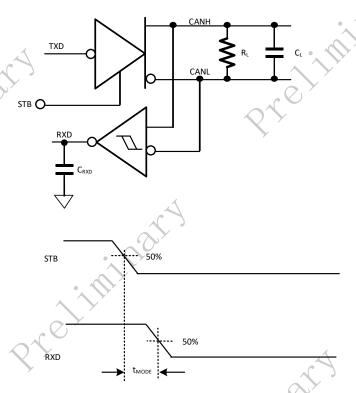


Figure 8-4. Mode Change Test Circuit and Measurement

reliminar.

2 ininary

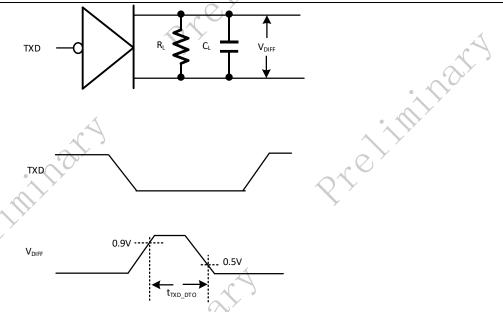


Figure 8-5. Transmitting Dominant Timeout Timing Diagram

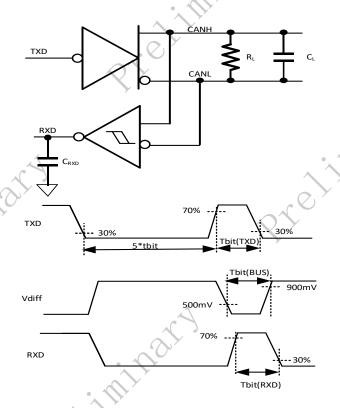


Figure 8-6. CAN FD Timing Parameter Measurement

HIMITALY

Preliminar.

Right

2 ininary

Preliminary

2 reliminary

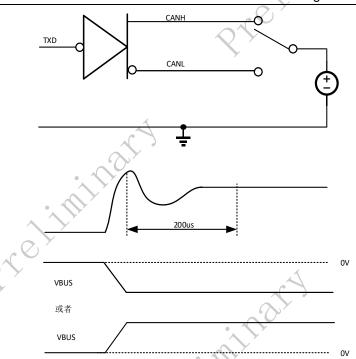


Figure 8-7. Driver Short Circuit Current Test Circuit and Measurement

Rieliminary

ininary

Preliminary

9. Detailed Description

The CA-IF1044Ax family of devices is fault-protected Controller Area Network (CAN) transceiver, meets the ISO11898-2 (2016) high speed CAN physical layer standard. These devices are designed for harsh industrial and automotive applications with a number of integrated robust protection features set that improve the reliability of end equipment. All devices are fault protected up to ±58V for the bus pins, making them ideal for applications where overvoltage protection is required. A common-mode voltage ranges of ±30V enables communication in noisy environments where there are ground plane differences between different systems. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited and protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

A separate input V_{IO} allows the CA-IF1044AVx devices to communicate with logic systems down to 3.3V while operating up to a +5V bus supply. This provides a reduced input voltage threshold to the TXD and STB inputs, and provides a logic-high output at RXD compatible with the microcontroller's supply rail. The logic compatibility eliminates external logic level translator and longer propagation delay due to level shifting. Connect V_{IO} to V_{CC} to operate with +5V logic systems.

The CA-IF1044Ax devices can operate up to 5Mbps data rate and support CAN FD. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors, for CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower than the theoretical value.

9.1. CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH-CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 0.9V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero(lower than 0.5V), see Figure 9-1 for the bus logic state voltage definition.

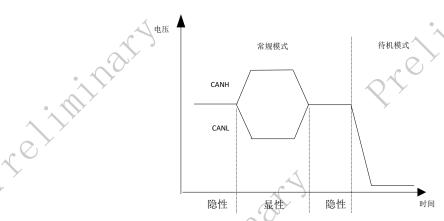


Figure 9-1. Bus Logic State Voltage Definition

9.2. Receiver

The receiver of CA-IF1044Ax family of devices includes a main receiver to support normal bi-directional communication and a low-power receive channel to monitor the bus line and detect the wakeup event on the bus line during standby mode. In normal operation (STB = low), the main receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH}-V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{DIFF} > 0.9V$, a logic-low is present on RXD; If $V_{DIFF} < 0.5V$, a logic-high is present. The CANH and CANL common-mode range is $\pm 30V$ in normal mode. See Figure 9-2 for the receiver input bias circuit.

Drive the STB pin high or leave it open for operating at standby mode, in this case, the main receiver is disabled and the low-power receive channel is enabled. This switches the receiver to a low current and low-speed state. The bus line is monitored by a low-power differential comparator to detect and recognize a wakeup event on the bus line. RXD is logic High until a valid wake-up is received. Once a valid remote wake-up event occurred, RXD transition to logic Low.

RXD is a logic-high when CANH and CANL are shorted or terminated and un-driven in both normal mode and standby mode, see Table 9-1 for more details about the receiver truth table.

DEVICE MODE	$V_{ID} = V_{CANH} - V_{CANL}$	BUS STATE	RXD
	V _{ID} ≥ 0.9V	Dominant	Low
Normal STB = Low	0.5V < V _{ID} <0.9V	Indeterminate	Indeterminate
315 - 2011	V _{ID} ≤ 0.5V	Recessive	High
Standby	V _{ID} > 1.15V	Dominant	Low if a remote wake event occurred, otherwise output High.
STB = High or open	0.4V < V _{ID} <1.15V	Indeterminate	Indeterminate
	V _{ID} ≤ 0.4V	Recessive	High
Any	Open (V _{ID} ≈ 0V)	Open	High

Table 9-1. Receiver Truth Table

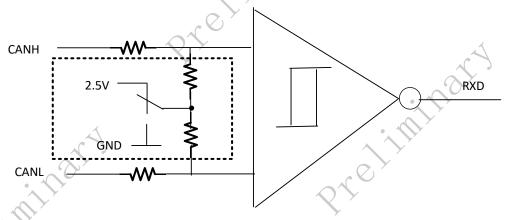


Figure 9-2. Receiver Input/Transmitter Output Bias Circuit

9.3. Transmitter

In normal operation (STB = Low), the transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the transmitter is provided in Table 9-2. The CA-IF1044x family of devices protects the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed and the junction temperature drops at least the thermal shutdown hysteresis temperature below the thermal shutdown temperature of the device.

Drive the STB pin high for standby mode, the transmitter is disabled and put the bus in high-impedance with internal weak pull-down to ground, see Figure 9-2.

Table 9-2. Transmitter Truth Table (When Not Connected to the Bus)

	NPUT	TVD LOW TIME	ОИТІ	PUT	DIIC CTATE
STB	TXD	TXD LOW TIME	CANH	CANL	BUS STATE
	Low	< t _{DOM}	High	Low	Dominant
Low	Low	> t _{DOM}	V _{CC} /2	V _{CC} /2	Recessive
Y	High or Open	X 🔾	V _{CC} /2	V _{CC} /2	Recessive
High or Open	Х	x	High-Z	High-Z	Bias to GND

Note: X = Don't care, High-Z = High impedance.

9.4. Protection Functions

9.4.1. Undervoltage Lockout

Both the CA-IF1044AS-Q1/CA-IF1044AD-Q1 and the CA-IF1044AVx family of devices have undervoltage detection on V_{CC} supply terminal. For CA-IF1044AS-Q1/CA-IF1044AD-Q1, when the supply voltage V_{CC} is less than V_{UN_VCC} and greater than $V_{UV_VCC_Sd}$, if STB = high, will put the device into low-power standby mode; if STB = low, will put the device into shutdown mode. If the supply voltage V_{CC} is less than $V_{UV_VCC_Sd}$, will put the device into shutdown and disable both receiver and driver, leave the bus in high-impedance. See Table 9-3 for more details.

Table 9-3. CA-IF1044AS-Q1/CA-IF1044AD-Q1 Undervoltage Lockout

6	V _{cc}	DEVICE STATE	BUS OUTPUT	RXD
1	> V _{UV_VCC}	Normal	Per TXD	Mirrors Bus
	$V_{UV_VCC} > V_{CC} > Vuv_vcc_sd$	Standby	Weak pull-down to GND	According to the wake-up status
	< Vuv_vcc_sd	Protected state	High-Z	High-Ź

The CA-IF1044AVx devices also feature undervoltage detection on V_{IO} supply terminal, if the supply voltage V_{IO} is less than V_{UV_VIO} , will disable both receiver and driver, put the device into shutdown mode. When V_{IO} is in valid level but V_{CC} is less than V_{UN_VCC} , if STB = high, will place the device into low-power standby mode; if STB = low, will put the device into shutdown mode. See Table 9-4 for the undervoltage lockout status of CA-IF1044Vx.

Table 9-4. CA-IF1044AVx Undervoltage Lockout

V _{cc}	V _{IO}	DEVICE STATE BUS OUTPUT		RXD
Q^{λ}	> V	Standby (STB = high)	Bias to GND	According to the wake-up status
> V _{UV_VCC}	> V _{UV_IO}	Normal(STB = GND)	Per TXD	According to BUS
< V _{UV_VCC}	> V _{UV_IO}	Standby	Bias to GND	According to the wake-up status
> V _{UV_VCC} or < V _{UV_VCC}	< V _{UV_IO}	Protected state	High-Z	High-Z

Once the undervoltage condition is cleared and the supply voltage has returned to a valid level, the devices transition to normal mode after the t_{MODE} time has expired. The host controller should not attempt to send or receive messages until the t_{MODE} time has expired.

9.4.2. Fault Protection

The CA-IF1044Ax devices has an internal ±42V overvoltage protection circuit on the driver output and receiver input to protect the devices from accidental shorts between a local power supply and the data lines of the transceivers. This level of protection is present whether the transceiver is powered or un-powered.

9.4.3. Thermal Shutdown

If the junction temperature of the devices exceed the thermal shutdown threshold T_{TSD} (185°C), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature below the thermal shutdown threshold.

9.4.4. Current-Limit

The CA-IF1044Ax protect the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9.4.5. Transmitter-Dominant Timeout

The CA-IF1044Ax family of devices features a transmitter-dominant timeout (t_{DOM}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{DOM} , the transmitter is disabled, releasing the bus to a recessive state (see Figure 9-3). After a dominant timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The transmitter-dominant timeout limits the minimum possible data rate to 4kbps.

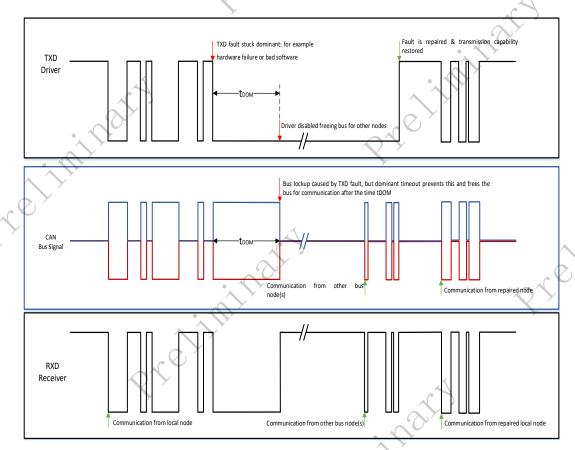


Figure 9-3. Transmitter-Dominant Timeout Protection

9.5. Unpowered Device

The device is designed to be 'ideal passive' or 'no load' to the CAN bus if it is unpowered. The bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus.

9.6. Floating Terminals

These devices have internal pull-up on critical terminals to place the device into known states if the terminals float. The TXD terminal is pulled up to V_{CC} or V_{IO} to force a recessive input level if the terminal floats. The pin STB is also pulled up to force the device into standby mode if the terminal floats.

9.7. Operating Mode

All devices have two operating modes: normal mode and standby mode. Operating mode selection is made via the STB input.

9.7.1. Normal Mode

Select the normal mode of devices operation by setting STB terminal to logic-low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a single-ended output on RXD.

9.7.2. Standby and Wake-up

Drive STB pin high or leave it open for standby mode, which switches the transmitter off and disables the main receiver. The low-power receive channel is enabled and put the device to a low current and low-speed monitor state. Thus the supply current is reduced during standby mode. The bus line is monitored by the low-power bus monitor, a low-speed differential comparator, to detect and recognize a wakeup event on the bus line, see Table 9-5.

STB MODE DRIVER RECEIVER

Low Normal Enabled Enabled

High or open Standby Disabled Low-power receive channel is enabled and monitor the bus line.

Table 9-5. Operating Mode

To improve the system operation reliability and prevent false wake-up, the CA-IF1044Ax devices' receiver features wake-up timeout detection and filtered CAN bus status wake-up detection according to the ISO 11898-2:2016 standard. This means, for a valid dominant or recessive to be considered, the bus must be kept in that state for more than the t_{WK_FILTER} time. For a remote wake-up event to successfully occur, a dominant bus level greater than t_{WK_FILTER} must be detected and received by the low-power receive channel first to initiate a wake-up event. Then the low-power monitor will wait for a valid recessive state from CAN bus. Once a valid recessive pulse is received, the low-power bus monitor is waiting for the 2^{nd} valid dominant state, other bus traffic does not reset the bus monitor. Once the low-power receive channel detects a successful wake-up event (a series of valid dominant - recessive - dominant pulses) within the timeout value $t \le t_{WK_TIMEOUT}$, RXD pulls low. CAN controller can drive the STB low based on this wake-up signal from RXD for normal operation. RXD is high until a valid wake-up is received during standby mode, see Figure 9-4 for more details.

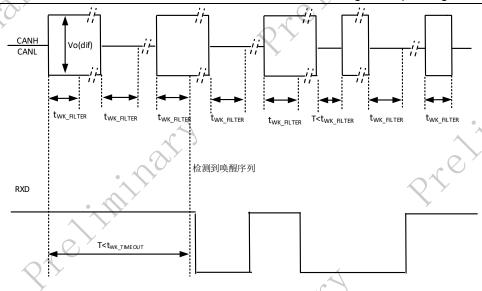


Figure 9-4. Wake-up Detection

10. Application Information

The CA-IF1044Ax CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the data link layer portion of the CAN protocol. Figure 10-1, Figure 10-2 show the typical application circuit for the CA-IF1044AS-Q1/CA-IF1044AD-Q1 and CA-IF1044AVx, respectively. In Figure 10-2, connect the V_{10} to the MCU logic-supply.

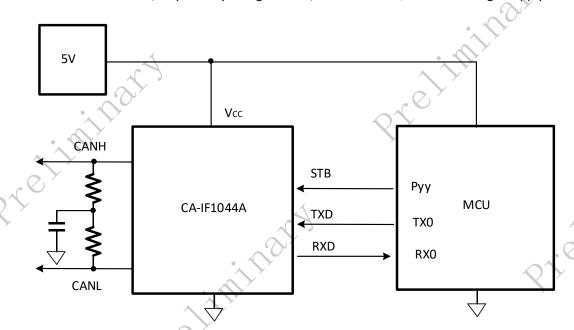


Figure 10-1. Typical Application Circuit for the CA-IF1044AS-Q1/CA-IF1044AD-Q1

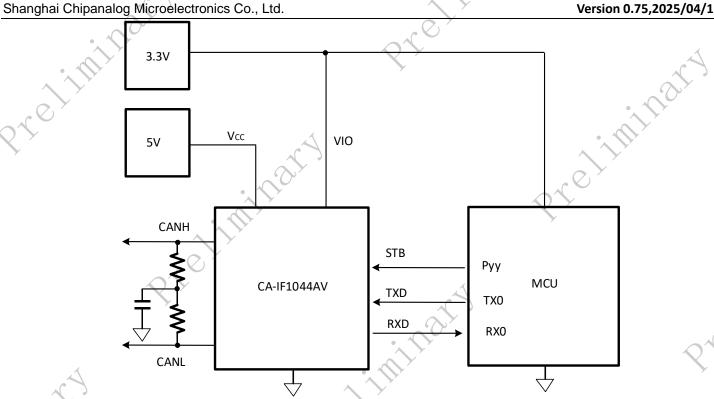
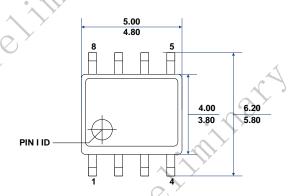


Figure 10-2. Typical Application Circuit for the CA-IF1044AVx

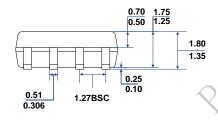
All of the CA-IF1044Ax series devices can operate up to 5Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes, with careful design, and consider of high input impedance of the CA-IF1044Ax, designers can have many more nodes on the CAN bus.

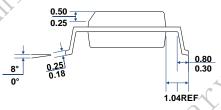
Ininary


2xelininary

y Climinar

11. Package Information


SOIC8 Package Outline


2.00

TOP VIEW

RECOMMENDED LAND PATTERN

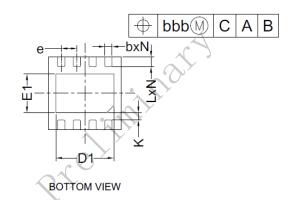
FRONT VIEW

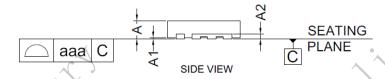
ininary

LEFT-SIDE VIEW

Note:

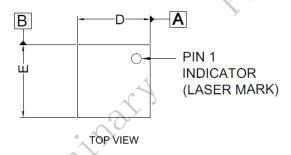
1. Controlling dimensions are in millimeters.


Figure 11-1. SOIC8 Package Outline


Preliminary

Preliminary

DFN8 Package Outline



COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

	\sim \times							
SYMBOL	MIN	TYP	MAX					
A	0.70	0.75	0.80					
Á1	0.00	0.02	0.05					
A2		0.203						
b	0.25	0.30	0.35					
D	2.90	3.00	3.10					
D1	2.35	2.40	2.45					
Е	2.90	3.00	3.10					
E1	1.55	1.60	1.65					
е		0.65BSC						
L	0.35	0.40	0.45					
K	0.20	-	-					
Ν		8	- 🔊					
aaa		0.08						
bbb		0.10						

Preliminary

ininary

Note:

1. Controlling dimensions are in millimeters.

Figure 11-2. DFN8 Package Outline

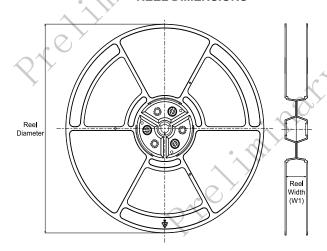
Preliminary

12. Soldering Temperature (reflow) Profile

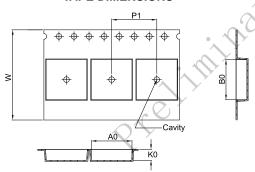
Figure 12-1. Soldering Temperature (reflow) Profile

Table 12-1. Soldering Temperature Parameter

	Figure 12-1. Solo	C to Peak dering Temperature (reflow) Profile coldering Temperature Parameter
SA	Profile Feature	Pb-Free Assembly
	Average ramp-up rate(217 °C to Peak)	3℃/second max
	Time of Preheat temp(from 150 $^{\circ}\mathrm{C}$ to 200 $^{\circ}\mathrm{C}$	60-120 second
	Time to be maintained above 217 °C	60-150 second
	Peak temperature	260 +5/-0 °C
	Time within 5 ℃ of actual peak temp	30 second
	Ramp-down rate	6 ℃/second max.
	Time from 25°C to peak temp	8 minutes max
4	2,5	ilinary Prelimitic

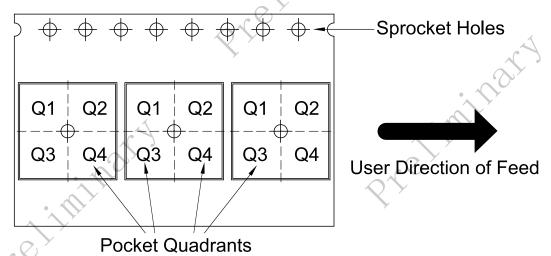

Preliminary

Iminary



13. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1_	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

	2	Poc	ket C	Quadra	ants		R	> Dil CO			, u		ari
27				*,	All dimensions	s are nominal				<			
Device	Packag e Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
CA-IF1044AS-Q1	SOIC8	S	8	2500	330	12.4	6.40	5.40	2.10	8.00	12.00	Q1	
CA-IF1044AVS-Q1	SOIC8	S	8	2500	330	12.4	6.40	5.40	2.10	8.00	12.00	Q1	
CA-IF1044AD-Q1	DFN8	D	8	3000	330	12.4	3.35	3.35	1.13	8.00	12.00	Q1	
CA-IF1044AVD-Q1	DFN8	D	8	3000	330	12.4	3.35	3.35	1.13	8.00	12.00	Q1	

14. Appendix

Table 14-1. Comparison Table of Parameter Symbols in SO11898-2:2016 Standard and CA-IF1044 Datasheet

ISO 11898-2:2016	CA-IF1044 Datasheet				
Parameter	Note	Symbol	Parameter		
HS-PMA dominant output characteristics	•				
Single ended voltage on CAN_H	Vcan_h	M======	dominant output voltage		
Single ended voltage on CAN_L	Vcan_l	Vo(dom)			
Differential voltage on normal bus load					
Differential voltage on effective resistance during arbitration	VDiff	Vod(dom)	dominant differential output voltage		
Optional: Differential voltage on extended bus load range			Y		
HS-PMA driver symmetry					
Driver symmetry	Vsym	Vsym	transmitter voltage symmetry		
Maximum HS-PMA driver output current	•	1			
Absolute current on CAN_H	ICAN_H				
Absolute current on CAN_L	ICAN_L	los(ss_dom)	dominant short-circuit output current		
HS-PMA recessive output characteristics, bus biasing active/inactive	e ^		<u> </u>		
Single ended output voltage on CAN_H	Vcan_H	· 1			
Single ended output voltage on CAN_L	Vcan_l	VO(REC)	recessive output voltage		
Differential output voltage	Voiff	VOD(REC)	recessive differential output voltage		
Optional HS-PMA transmit dominant timeout	/	L	4		
Transmit dominant timeout, long					
Transmit dominant timeout, short	tdom	tDOM	TXD dominant time-out time		
HS-PMA static receiver input characteristics, bus biasing active/inac	tive	L	• • •		
Recessive state differential input voltage range	Marie	Mirr	differential enginer threehold voltage		
Dominant state differential input voltage range	VDiff	VIT	differential receiver threshold voltage		
HS-PMA receiver input resistance (matching)					
Differential internal resistance	Roiff	RDIFF	differential input resistance		
Single ended internal resistance	Rcan_h Rcan_l	R _{IN}	input resistance		
Matching of internal resistance	m _R	RDIFF(M)	input resistance deviation		
HS-PMA implementation loop delay requirement					
The state of the s		tloop2	delay time from TXD HIGH to RXD HIGH		
Loop delay	tLoop	tloop1	delay time from TXD LOW to RXD LOW		
Optional HS-PMA implementation data signal timing requirements Mbit/s up to 5 Mbit/s	for use with	bit rates above	e 1 Mbit/s up to 2 Mbit/s and above 2		
Transmitted recessive bit width @ 2 Mbit/s / @ 5 Mbit/s, intended	tBit(Bus)	tbit(BUS)	transmitted recessive bit width		
Received recessive bit width @ 2 Mbit/s / @ 5 Mbit/s	tBit(RXD)	tbit(RXD)	bit time on pin RXD		
Receiver timing symmetry @ 2 Mbit/s / @ 5 Mbit/s	ΔtRec	ΔtRec	receiver timing symmetry		
HS-PMA maximum ratings of V _{CAN_H} , V _{CAN_L} and V _{Diff}	•		41		
Maximum rating V _{Diff}	VDiff	V(DIFF)	voltage between pin CANH and pin CANL		
General maximum rating V _{CAN_H} and V _{CAN_L}	Vcan_h	\//BLIC\	Notago on CANIL CANIL sin		
Optional: Extended maximum rating VCAN_H and VCAN_L	Vcan_l	V(BUS)	voltage on CANH, CANL pin		

15. Important Statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

reliminar.

Trademark information

1 ininat

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

celiminary

Singel 3 | B-2550 Kontich | Belgium | Tel.+32(0)3 458 30 33 info@alcom.be | www.alcom.be | www.alcom.be | Le c t r o n i c s Rivium 1e straat 52 | 2909 LE Capelle aan den Ussel | The Netherlands | A STELIAU TECHNOLOGY COMPANY | Tel.+31(0)10 288 25 00 | info@alcom.nl | www.alcom.nl

celiminary

http://www.chipanalog.com

e ininar